We report here that in addition to a cytoplasmic copper-zinc-containing superoxide dismutase (SOD) and a mitochondrial manganese-containing SOD, Candida albicans expresses a third SOD gene (SOD3). The deduced amino acid sequence contains all of the motifs found in previously characterized manganese-containing SODs, except the presence of a mitochondrial transit peptide. Recombinant Sod3p expressed and purified from Escherichia coli is a homotetramer with a subunit mass of 25.4 kDa. Mass absorption spectrometry detected the presence of both iron and manganese in purified Sod3p but, as determined by metal replacement experiments, the enzyme displays activity only when bound to manganese. Overexpression of SOD3 was shown to rescue the hypersensitivity to redox cycling agents of a Saccharomyces cerevisiae mutant lacking the cytoplasmic copper-zinc-containing SOD. Northern blot analyses showed that the transcription of SOD3 is induced neither by the transition from the yeast to the mycelial form of C. albicans nor by drug-induced oxidative stress. In continuous cultures, the expression of SOD3 was strongly stimulated upon the entry and during the stationary phase, concomitantly with the repression of SOD1. We conclude that Sod3p is an atypical cytosolic manganese-containing superoxide dismutase that is involved in the protection of C. albicans against reactive oxygen species during the stationary phase.
Manganese-dependent superoxide dismutase 2 (SOD2) in the mitochondria plays a key role in protection against oxidative stress. Here we probed the pathway by which SOD2 acquires its manganese catalytic cofactor. We found that a mitochondrial localization is essential. A cytosolic version of Saccharomyces cerevisiae Sod2p is largely apo for manganese and is only efficiently activated when cells accumulate toxic levels of manganese. Furthermore, Candida albicans naturally produces a cytosolic manganese SOD (Ca SOD3), yet when expressed in the cytosol of S. cerevisiae, a large fraction of Ca SOD3 also remained manganese-deficient. The cytosol of S. cerevisae cannot readily support activation of Mn-SOD molecules. By monitoring the kinetics for metalation of S. cerevisiae Sod2p in vivo, we found that prefolded Sod2p in the mitochondria cannot be activated by manganese. Manganese insertion is only possible with a newly synthesized polypeptide. Furthermore, Sod2p synthesis appears closely coupled to Sod2p import. By reversibly blocking mitochondrial import in vivo, we noted that newly synthesized Sod2p can enter mitochondria but not a Sod2p polypeptide that was allowed to accumulate in the cytosol. We propose a model in which the insertion of manganese into eukaryotic SOD2 molecules is driven by the protein unfolding process associated with mitochondrial import.
The yeast YAP3 gene encodes an aspartyl endoprotease that cleaves precursor proteins at selected pairs of basic amino acids and after single arginine residues. Biosynthetic studies of this proprotein processing enzyme indicate that Yap3 is predominantly cell-associated and migrates as a approximately 160-kDa protein on SDS-polyacrylamide gel electrophoresis. Nearly equal amounts of Yap3 are immunodetected in a-haploid, alpha-haploid, and a/alpha-diploid yeast, demonstrating that the expression of YAP3 is not mating type-specific. As shown by endoglycosidase H treatment, which drastically reduces both the estimated molecular mass and the heterogeneity of the protein on SDS-polyacrylamide gel electrophoresis (68 versus 160 kDa), the oligosaccharides N-linked to the protein are subjected to extensive outer chain mannosylation. Outer chain sugar mannosylation takes place in the Golgi apparatus and is commonly found on yeast secreted glycoproteins and/or cell wall mannoproteins. Treatment of the total yeast membranes with chemical agents known to disrupt protein-protein and protein-lipid interactions reveal that Yap3 is membrane-associated. Based upon the release of the membrane-bound form by bacterial phosphatidylinositol phospholipase C digestion and metabolic labeling of the protein with myo-[3H]inositol, Yap3 owes its association with the membrane to the addition of a glycophosphatidylinositol anchor. The cellular localization of Yap3 has been addressed by subcellular fractionation studies. In both differential centrifugation of intracellular organelles and sucrose density gradients, the bulk of Yap3 at steady state co-localizes with the plasma membrane azide-insensitive ATPase. Furthermore, consistent with the transport of Yap3 to the plasma membrane, the endoprotease sediments with secretory vesicles which accumulate at restrictive temperature in the late secretory mutant sec1-1. We therefore conclude that the endoprotease encoded by YAP3 is a glycophosphatidylinositol-anchored protein, which can process substrates both intracellularly and at the cell surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.