Iron oxides and oxyhydroxides are important sorbents for arsenic in soils, sediments, and water treatment systems, but their long-term potential for arsenic retention may be diminished by the formation of polymeric silicate on their surfaces. To study these interactions, we first investigated the sorption of silicate to colloidal hematite (α-Fe(2)O(3)) in short-term (48 h) and long-term (210 days) batch experiments. The polymerization of silicate on the hematite surface was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The pH dependence of silicate sorption exhibited a maximum between pH 9.0 and 9.5. The condensation of silicate on hematite surfaces adsorbed from monomeric silicate solutions steadily continued over the 210 day period, whereby surface polymerization was slower at pH 3 than at pH 6. The effect of silicate surface polymerization on arsenate and arsenite sorption was studied by use of hematite pre-equilibrated with silicate for different time periods of up to 210 days. The competitive effect of silicate on arsenate and arsenite sorption increased with increasing silicate pre-equilibration time. Only under strongly acidic conditions (pH 3), where silicate sorption was weakest and surface polymerization was slowest, was arsenate and arsenite sorption not affected by the presence of silicate. We conclude that the long-term exposure to dissolved silicate can decrease the potential of natural iron (oxyhydr)oxides for adsorbing inorganic arsenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.