Abstract. We give a complete characterization of the locally compact groups that are non-elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semi-regular trees acting doubly transitively on the set of ends. As an application, we show that the class of hyperbolic locally compact groups with a cusp-uniform non-uniform lattice, is very restricted.
This book offers to study locally compact groups from the point of view of appropriate metrics that can be defined on them, in other words to study "Infinite groups as geometric objects", as Gromov writes it in the title of a famous article. The theme has often been restricted to finitely generated groups, but it can favourably be played for locally compact groups.The development of the theory is illustrated by numerous examples, including matrix groups with entries in the the field of real or complex numbers, or other locally compact fields such as p-adic fields, isometry groups of various metric spaces, and, last but not least, discrete group themselves.Word metrics for compactly generated groups play a major role. In the particular case of finitely generated groups, they were introduced by Dehn around 1910 in connection with the Word Problem.Some of the results exposed concern general locally compact groups, such as criteria for the existence of compatible metrics (Birkhoff-Kakutani, Kakutani-Kodaira, Struble). Other results concern special classes of groups, for example those mapping onto Z (the Bieri-Strebel splitting theorem, generalized to locally compact groups).Prior to their applications to groups, the basic notions of coarse and large-scale geometry are developed in the general framework of metric spaces. Coarse geometry is that part of geometry concerning properties of metric spaces that can be formulated in terms of large distances only. In particular coarse connectedness, coarse simple connectedness, metric coarse equivalences, and quasi-isometries of metric spaces are given special attention.The final chapters are devoted to the more restricted class of compactly presented groups, which generalize finitely presented groups to the locally compact setting. They can indeed be characterized as those compactly generated locally compact groups that are coarsely simply connected.
with an appendix by Yves de CornulierInternational audienceLet k be an algebraically closed field. We show that the Cremona group of all birational transformations of the projective plane P^2 over k is not a simple group. The strategy makes use of hyperbolic geometry, geometric group theory, and algebraic geometry to produce elements in the Cremona group which generate non trivial normal subgroups
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.