HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We introduce acyclic polygraphs, a notion of complete categorical cellular
model for (small) categories, containing generators, relations and
higher-dimensional globular syzygies. We give a rewriting method to construct
explicit acyclic polygraphs from convergent presentations. For that, we
introduce higher-dimensional normalisation strategies, defined as homotopically
coherent ways to relate each cell of a polygraph to its normal form, then we
prove that acyclicity is equivalent to the existence of a normalisation
strategy. Using acyclic polygraphs, we define a higher-dimensional homotopical
finiteness condition for higher categories which extends Squier's finite
derivation type for monoids. We relate this homotopical property to a new
homological finiteness condition that we introduce here.Comment: Final versio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.