Precipitable water (PW) derived from the GPS zenith tropospheric delay (ZTD) is evaluated (as a first step toward variational data assimilation) through comparison with that of collocated radiosondes (RS_PW), operational analyses, and 6-h forecasts (from the Canadian Global Environmental Multiscale model) of the Canadian Meteorological Centre. Two sources of ZTD data are considered: 1) final ZTD (over Canada), computed by the Geodetic Survey Division (GSD) of Natural Resources Canada, and 2) final ZTD (distributed globally), obtained from the International GPS Service (IGS). The mean GSD GPS–derived PW (GPS_PW) is 14.9 mm (reflecting the relatively cold Canadian climate), whereas that of the IGS dataset is 20.8 mm. Intercomparison statistics [correlation, standard deviation (SD), and bias] between GPS_PW and RS_PW are, respectively, 0.97, 2.04 mm, and 1.35 mm for the GSD data and 0.98, 2.6 mm, and 0.67 mm for the IGS data. Comparisons of GPS_PW with 6-h forecast PW (TRIAL_PW) show slightly lower correlations and a higher SD. The increase in SD is greater for the IGS data, which is not surprising, because in regions such as the Tropics and subtropics, moisture forecasts are of a lower quality and the RS observation network is sparse. From a three-way intercomparison (IGS GPS_PW, RS_PW, and TRIAL_PW) of the SD statistics, it is found that GPS_PW has the lowest estimated PW error (≈1 mm) for PW in the 5–30-mm range. For PW greater than 30 mm, the RS_PW estimated error is ≈2 mm, and that of GPS_PW is ≈2.5 mm. The TRIAL_PW estimated error increases with PW, reaching 5.5 mm in the 40–55-mm PW range. These intercomparison results indicate that GPS_PW should be a useful source of humidity information for NWP applications.
Precise point positioning (PPP) uses precise satellite orbits, clock corrections and biases derived from a global network of reference stations to enable accurate positioning worldwide. Natural Resources Canada's Canadian Spatial Reference System (CSRS) PPP is a free Web service offering automated PPP processing. A critical factor limiting the adoption of PPP in many applications is the convergence time needed to reach centimeter‐level accuracies. To address this issue, CSRS‐PPP now implements PPP with ambiguity resolution (PPP‐AR). This feature required the development of new algorithms, such as sequential normal stacking for least‐squares filtering/smoothing, and the weighted integer decision concept for ambiguity validation. New satellite product lines (ultra‐rapid, rapid, final) also have been deployed to enable PPP‐AR processing with various latencies. This analysis demonstrates that sub‐centimeter horizontal accuracies can be obtained in less than one hour for both static and kinematic modes. Using product lines with longer latencies is beneficial, although improvements are typically within the reported uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.