Super-resolution optical fluctuation imaging overcomes the diffraction limit by analyzing fluctuations in the fluorophore emission. A key assumption of the imaging is that the fluorophores are independent, though this is invalidated in the presence of photodestruction. In this work, we evaluate the effect of photodestruction on SOFI imaging using theoretical considerations and computer simulations. We find that photodestruction gives rise to an additional signal that does not present an easily interpretable view of the sample structure. This additional signal is strong and the resulting images typically exhibit less noise. Accordingly, these images may be mis-interpreted as being more visually pleasing or more informative. To address this uncertainty, we develop a procedure that can robustly estimate to what extent any particular experiment is affected by photodestruction. We also develop a detailed assessment methodology and use it to evaluate the performance of several correction algorithms. We identify two approaches that can correct for the presence of even strong photodestruction, one of which can be implemented directly in the SOFI calculation software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.