The Wnt signaling pathway is critical in normal development, and mutation of specific components is frequently observed in carcinomas of diverse origins. However, the potential involvement of this pathway in lung tumorigenesis has not been established. In this study, analysis of multiple Wnt mRNAs in non-small cell lung cancer (NSCLC) cell lines and primary lung tumors revealed markedly decreased Wnt-7a expression compared with normal short-term bronchial epithelial cell lines and normal uninvolved lung tissue. Wnt-7a transfection in NSCLC cell lines reversed cellular transformation, decreased anchorage-independent growth, and induced epithelial differentiation as demonstrated by soft agar and three-dimensional cell culture assays in a subset of the NSCLC cell lines. The action of Wnt-7a correlated with expression of the specific Wnt receptor Frizzled-9 (Fzd-9), and transfection of Fzd-9 into a Wnt-7a-insensitive NSCLC cell line established Wnt-7a sensitivity. Moreover, Wnt-7a was present in Fzd-9 immunoprecipitates, indicating a direct interaction of Wnt-7a and Fzd-9. In NSCLC cells, Wnt-7a and Fzd-9 induced both cadherin and Sprouty-4 expression and stimulated the JNK pathway, but not -catenin/T cell factor activity. In addition, transfection of gain-of-function JNK strongly inhibited anchorage-independent growth. Thus, this study demonstrates that Wnt-7a and Fzd-9 signaling through activation of the JNK pathway induces cadherin proteins and the receptor tyrosine kinase inhibitor Sprouty-4 and represents a novel tumor suppressor pathway in lung cancer that is required for maintenance of epithelial differentiation and inhibition of transformed cell growth in a subset of human NSCLCs.
Pharmacological activators of peroxisome proliferator-activated receptor-␥ (PPAR␥) inhibit growth of non-small-cell lung cancer (NSCLC) cell lines in vitro and in xenograft models. Because these agents engage off-target pathways, we have assessed the effects of PPAR␥ by overexpressing the protein in NSCLC cells. We reported previously that increased PPAR␥ inhibits transformed growth and invasiveness and promotes epithelial differentiation in a panel of NSCLC expressing oncogenic K-Ras. These cells express high levels of cyclooxygenase-2 (COX-2) and produce high levels of prostaglandin E 2 (PGE 2 ). The goal of these studies was to identify the molecular mechanisms whereby PPAR␥ inhibits tumorigenesis. Increased PPAR␥ inhibited expression of COX-2 protein and promoter activity, resulting in decreased PGE 2 production. Suppression of COX-2 was mediated through increased activity of the tumor suppressor phosphatase and tensin homolog, leading to decreased levels of phospho-Akt and inhibition of nuclear factor-B activity. Pharmacological inhibition of PGE 2 production mimicked the effects of PPAR␥ on epithelial differentiation in three-dimensional culture, and exogenous PGE 2 reversed the effects of increased PPAR␥ activity. Transgenic mice overexpressing PPAR␥ under the control of the surfactant protein C promoter had reduced expression of COX-2 in type II cells and were protected against developing lung tumors in a chemical carcinogenesis model. These data indicate that high levels of PGE 2 as a result of elevated COX-2 expression are critical for promoting lung tumorigenesis and that the antitumorigenic effects of PPAR␥ are mediated in part through blocking this pathway.
Cashew nuts are an increasingly common cause of food allergy. We compare the soluble protein profile of cashew nuts following heating. SDS-PAGE indicate that heating can alter the solubility of cashew nut proteins. The 11S legumin, Ana o 2, dominates the soluble protein content in ready to eat and mildly heated cashew nuts. However, we found that in dark-roasted cashew nuts, the soluble protein profile shifts and the 2S albumin Ana o 3 composes up to 40% of the soluble protein. Analysis of trypsin-treated extracts by LC/MS/MS indicate changes in the relative number and intensity of peptides. The relative cumulative intensity of the 5 most commonly observed Ana o 1 and 2 peptides are altered by heating, while those of the 5 most commonly observed Ana o 3 peptides remaine relatively constant. ELISA experiments indicate that there is a decrease in rabbit IgG and human serum IgE binding to soluble cashew proteins following heating. Our findings indicate that heating can alter the solubility of cashew allergens, resulting in altered IgE binding. Our results support the use of both Ana o 2 and Ana o 3 as potential cashew allergen diagnostic targets.
The proliferation, differentiation, and fusion of a small number of myogenic precursor cells must be precisely regulated during development to ensure the proper size, organization, and function of the limb musculature. We have examined the role of Sonic hedgehog (Shh) in these processes by both augmentation and inhibition of the Shh-mediated signaling pathway. Our data show that Shh regulates muscle development by repressing the terminal differentiation of early myogenic precursor cells and does not function as a myoblast mitogen. Shh function in hypaxial muscle appears to be spatially restricted to the early myoblast population within the ventral muscles of the posterior region of the limb. Furthermore, Shh appears to act as a permissive, rather than an inductive, signal for slow MyHC expression in myoblasts. Our data thus provide the foundation for a new hypothesis for Shh function in hypaxial skeletal muscle development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.