Aquaporin-1 (AQP1) facilitates the osmotic transport of water across the capillary endothelium, among other cell types, and thereby has a substantial role in ultrafiltration during peritoneal dialysis. At present, pharmacologic agents that enhance AQP1-mediated water transport, which would be expected to increase the efficiency of peritoneal dialysis, are not available. Here, we describe AqF026, an aquaporin agonist that is a chemical derivative of the arylsulfonamide compound furosemide. In the Xenopus laevis oocyte system, extracellular AqF026 potentiated the channel activity of human AQP1 by .20% but had no effect on channel activity of AQP4. We found that the intracellular binding site for AQP1 involves loop D, a region associated with channel gating. In a mouse model of peritoneal dialysis, AqF026 enhanced the osmotic transport of water across the peritoneal membrane but did not affect the osmotic gradient, the transport of small solutes, or the localization and expression of AQP1 on the plasma membrane. Furthermore, AqF026 did not potentiate water transport in Aqp1-null mice, suggesting that indirect mechanisms involving other channels or transporters were unlikely. Last, in a mouse gastric antrum preparation, AqF026 did not affect the Na-K-Cl cotransporter NKCC1. In summary, AqF026 directly and specifically potentiates AQP1-mediated water transport, suggesting that it deserves additional investigation for applications such as peritoneal dialysis or clinical situations associated with defective water handling.
These data demonstrate the structural and functional similarity between mouse and rat models of PD, and further emphasize the relevance of mouse models to understand PD in humans. They also suggest that gender may influence water transport and AQP1 expression in the peritoneum.
Our results demonstrate that local generation of NO, secondary to up-regulation of NOS isoforms, plays an important role in the regulation of peritoneal permeability during acute peritonitis in rats. By itself, NOS inhibition improves UF and reverses permeability changes, which might offer new therapeutic perspectives in acute peritonitis.
Excessive intraperitoneal absorption of glucose during peritoneal dialysis has both local cytotoxic and systemic metabolic effects. Here we evaluate peritoneal dialysis solutions containing L-carnitine, an osmotically active compound that induces fluid flow across the peritoneum. In rats, L-carnitine in the peritoneal cavity had a dose-dependent osmotic effect similar to glucose. Analogous ultrafiltration and small solute transport characteristics were found for dialysates containing 3.86% glucose, equimolar L-carnitine, or combinations of both osmotic agents in mice. About half of the ultrafiltration generated by L-carnitine reflected facilitated water transport by aquaporin-1 (AQP1) water channels of endothelial cells. Nocturnal exchanges with 1.5% glucose and 0.25% L-carnitine in four patients receiving continuous ambulatory peritoneal dialysis were well tolerated and associated with higher net ultrafiltration than that achieved with 2.5% glucose solutions, despite the lower osmolarity of the carnitine-containing solution. Addition of L-carnitine to endothelial cells in culture increased the expression of AQP1, significantly improved viability, and prevented glucose-induced apoptosis. In a standard toxicity test, the addition of L-carnitine to peritoneal dialysis solution improved the viability of L929 fibroblasts. Thus, our studies support the use of L-carnitine as an alternative osmotic agent in peritoneal dialysis.
The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2–3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo, migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.