Rigorously defined reconstitution assays developed in recent years have allowed recognition of the delicate relationship that exists between hematopoietic stem cells and their niches. This balance ensures that hematopoiesis occurs in the marrow under steady-state conditions. However, during development, recovery from hematopoietic stress and in myeloproliferative disorders, hematopoiesis occurs in extramedullary sites whose microenvironments are still poorly defined. The hypomorphic Gata1low mutation deletes the regulatory sequences of the gene necessary for its expression in hematopoietic cells generated in the marrow. By analyzing the mechanism that rescues hematopoiesis in mice carrying this mutation, we provide evidence that extramedullary microenvironments sustain maturation of stem cells that would be otherwise incapable of maturing in the marrow.
Purpose: Expression of aminopeptidase N/CD13 can be detected in several solid tumor types. Thus far, the role of CD13 in ovarian cancer has not been studied. We have investigated the expression pattern and biological function of CD13 in ovarian cancer.Experimental Design: First, we studied the expression of CD13 in ovarian cancer tissue of 15 patients representing three different histological types (5 patients each) by immunohistochemistry. We then stably transfected the IGROV-1 human ovarian cancer cell line with a CD13 expression vector and examined the biological effect of CD13 in vitro and in vivo.Results: The expression of CD13 in ovarian cancer was associated with the histological subtype: CD13 expression in tumor cells was observed in 80 -100% of the patients with a serous or mucinous carcinoma and in only 20% of the clear cell carcinoma patients. In all patients' tumor samples, CD13-positive blood vessels were present. CD13 overexpression in IGROV-1 cells did not affect in vitro cell growth and sensitivity to doxorubicin, cisplatin, or gemcitabine. CD13 overexpression reduced invasion in Matrigel, which appeared to be independent of the aminopeptidase activity of CD13. Furthermore, the growth rate of IGROV-1/CD13 xenografts was reduced. The area of the vessel lumens was enlarged in a small percentage of vessels in the CD13-overexpressing xenografts. In addition, the CD13-overexpressing tumors were less sensitive to cisplatin.Conclusions: CD13 is expressed in tumor as well as endothelial cells in human ovarian cancer. Our results suggest that CD13 overexpression affects ovarian cancer growth, vascular architecture, and response to chemotherapy. Further elucidation of the mechanism of the observed effects of CD13 is warranted to better understand its role in the pathophysiology of ovarian cancer.
Single cord blood unit (CBU) predominance is usually established within the first month after double umbilical cord blood transplantation (UCBT). However, the kinetics of engraftment of the different leukocyte subsets and the mechanism of graft predominance is largely unknown. To investigate whether a differential engraftment might reveal a specific subset that could play a key role in the mechanism of graft predominance, we studied early engraftment kinetics of different leukocyte subpopulations by flow cytometry using human monoclonal antigen-specific human leukocyte antigen antibodies, directed against mismatched human leukocyte antigen-A or -B antigens between recipient and CBUs. Twenty-two patients, who had received a double UCBT preceded by a reduced-intensity conditioning regimen, were evaluated at days +11, +18, +25, and +32 posttransplantation. Single CBU predominance in the various leukocyte subsets was established within 18 days posttransplantation. CD4+ T cells of the dominant CBU showed early peripheral blood expansion. Moreover, chimerism in CD4+ and CD8+ T cell and natural killer cell subsets at day +11 was predictive of ultimate graft predominance. These findings show that engraftment kinetics of the various leukocyte subsets vary considerably after double UCBT and may suggest an important role for CD4+ T cells in a presumed alloreactive graft-versus-graft rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.