We propose a new general version of Stein's method for univariate distributions. In particular we propose a canonical definition of the Stein operator of a probability distribution which is based on a linear difference or differential-type operator. The resulting Stein identity highlights the unifying theme behind the literature on Stein's method (both for continuous and discrete distributions). Viewing the Stein operator as an operator acting on pairs of functions, we provide an extensive toolkit for distributional comparisons. Several abstract approximation theorems are provided. Our approach is illustrated for comparison of several pairs of distributions : normal vs normal, sums of independent Rademacher vs normal, normal vs Student, and maximum of random variables vs exponential, Fréchet and Gumbel.
In this paper we propose tight upper and lower bounds for the Wasserstein distance between any two univariate continuous distributions with probability densities p 1 and p 2 having nested supports. These explicit bounds are expressed in terms of the derivative of the likelihood ratio p 1 /p 2 as well as the Stein kernel τ 1 of p 1 . The method of proof relies on a new variant of Stein's method which manipulates Stein operators.We give several applications of these bounds. Our main application is in Bayesian statistics : we derive explicit data-driven bounds on the Wasserstein distance between the posterior distribution based on a given prior and the no-prior posterior based uniquely on the sampling distribution. This is the first finite sample result confirming the well-known fact that with well-identified parameters and large sample sizes, reasonable choices of prior distributions will have only minor effects on posterior inferences if the data are benign.
We develop a new method for bounding the relative entropy of a random vector in terms of its Stein factors. Our approach is based on a novel representation for the score function of smoothly perturbed random variables, as well as on the de Bruijn's formula of information theory. When applied to sequences of functionals of a general Gaussian field, our results can be combined with the Carbery-Wright inequality in order to yield multidimensional entropic rates of convergence that coincide, up to a logarithmic factor, with those achievable in smooth distances (such as the 1-Wasserstein distance). In particular, our findings settle the open problem of proving a quantitative version of the multidimensional fourth moment theorem for random vectors having chaotic components, with explicit rates of convergence in total variation that are independent of the order of the associated Wiener chaoses. The results proved in the present paper are outside the scope of other existing techniques, such as for instance the multidimensional Stein's method for normal approximations.
We propose probabilistic representations for inverse Stein operators (i.e. solutions to Stein equations) under general conditions; in particular we deduce new simple expressions for the Stein kernel. These representations allow to deduce uniform and non-uniform Stein factors (i.e. bounds on solutions to Stein equations) and lead to new covariance identities expressing the covariance between arbitrary functionals of an arbitrary univariate target in terms of a weighted covariance of the derivatives of the functionals. Our weights are explicit, easily computable in most cases, and expressed in terms of objects familiar within the context of Stein's method. Applications of the Cauchy-Schwarz inequality to these weighted covariance identities lead to sharp upper and lower covariance bounds and, in particular, weighted Poincaré inequalities. Many examples are given and, in particular, classical variance bounds due to Klaassen, Brascamp and Lieb or Otto and Menz are corollaries. Connections with more recent literature are also detailed. * Université de Liège, corresponding author Yvik Swan: yswan@uliege.be.
We provide a bound on a natural distance between finitely and infinitely supported elements of the unit sphere of ℓ 2 (IN ⋆ ), the space of real valued sequences with finite ℓ 2 norm. We use this bound to estimate the 2-Wasserstein distance between random variables which can be represented as linear combinations of independent random variables. Our results are expressed in terms of a discrepancy measure which is related to Nourdin and Peccati's Malliavin-Stein method. The main area of application of our results is towards the computation of quantitative rates of convergence towards elements of the second Wiener chaos. After particularizing our bounds to this setting and comparing them with the available literature on the subject (particularly the Malliavin-Stein method for variance-gamma random variables), we illustrate their versatility by tackling three examples: chi-squared approximation for second order U -statistics, asymptotics for sequences of quadratic forms and the behavior of the generalized Rosenblatt process at extreme critical exponent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.