In mammals, reproduction, especially for females is energetically demanding. Therefore, during the reproductive period females could potentially adjust patterns of thermoregulation and foraging in concert to minimise the energetic constraints associated with pregnancy and lactation. We assessed the influence of pregnancy, lactation, and post-lactation on torpor use and foraging behaviour by female little brown bats, Myotis lucifugus. We measured thermoregulation by recording skin temperature and foraging by tracking bats which carried temperature-sensitive radio-tags. We found that individuals, regardless of reproductive condition, used torpor, but the patterns of torpor use varied significantly between reproductive (pregnant and lactating) females and post-lactating females. As we predicted, reproductive females entered torpor for shorter bouts than post-lactating females. Although all females used torpor frequently, pregnant females spent less time in torpor, and maintained higher skin temperatures than either lactating or post-lactating females. This result suggests that delayed offspring development which has been associated with torpor use during pregnancy, may pose a higher risk to an individual's reproductive success than reduced milk production during lactation. Conversely, foraging behaviour of radio-tagged bats did not vary with reproductive condition, suggesting that even short, shallow bouts of torpor produce substantial energy savings, likely obviating the need to spend more time foraging. Our data clearly show that torpor use and reproduction are not mutually exclusive and that torpor use (no matter how short or shallow) is an important means of balancing the costs of reproduction for M. lucifugus.
In severe hypoxia, most vertebrates increase anaerobic energy production, which results in the development of a metabolic acidosis and an O2 debt that must be repaid during reoxygenation. Naked mole rats (NMRs) are among the most hypoxia-tolerant mammals, capable of drastically reducing their metabolic rate in acute hypoxia; while staying active and alert. We hypothesized that a key component of remaining active is an increased reliance on anaerobic metabolism during severe hypoxia. To test this hypothesis, we exposed NMRs to progressive reductions in inspired O2 (9 to 3% O2) followed by reoxygenation (21% O2) and measured breathing frequency, heart rate, behavioural activity, body temperature, metabolic rate, and also metabolic substrates and pH in blood and tissues. We found that NMRs exhibit robust metabolic rate depression in acute hypoxia, accompanied by declines in all physiological and behavioural variables examined. However, blood and tissue pH were unchanged and tissue [ATP] and [phosphocreatine] were maintained. Naked mole rats increased their reliance on carbohydrates in hypoxia, and glucose was mobilized from the liver to the blood. Upon reoxygenation NMRs entered into a coma-like state for∼15-20 mins during which metabolic rate was negligible and body temperature remained suppressed. However, an imbalance in the rates at which V̇O2 and V̇CO2 returned to normoxic levels during reoxygenation hint at the possibility that NMRs do utilize anaerobic metabolism during hypoxia but have a tissue and/or blood buffering capacity that mask typical markers of metabolic acidosis, and prioritize the synthesis of glucose from lactate during recovery.
Since its discovery in the winter of 2005 -2006, white-nose syndrome (WNS) has killed over one million little brown bats (Myotis lucifugus) in the American northeast. Although many studies have reported die-offs of bats at winter hibernacula, it is important to understand how bat mortality linked to WNS at winter hibernacula affects bat activity levels in their summer ranges. In the summer (May-August) of 2007, 2008 and 2009, we recorded echolocation calls to determine bat activity at sites along the Hudson River, NY (within approx. 100 km of where WNS was first reported). We documented a 78 per cent decline in the summer activity of M. lucifugus, coinciding with the arrival and spread of WNS. We suggest that mortality of M. lucifugus in winter hibernacula is reflected by reduced levels of activity in the summer and that WNS affects the entire bat population of an area, and not only individual hibernacula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.