Objective-MicroRNAs (miRNAs) are small noncoding RNAs that have the capacity to control protein production through binding "seed" sequences within a target mRNA. Each miRNA is capable of potentially controlling hundreds of genes. The regulation of miRNAs in the lung during the development of pulmonary arterial hypertension (PAH) is unknown. Methods and Results-We screened lung miRNA profiles in a longitudinal and crossover design during the development of PAH caused by chronic hypoxia or monocrotaline in rats. We identified reduced expression of Dicer, involved in miRNA processing, during the onset of PAH after hypoxia. MiR-22, miR-30, and let-7f were downregulated, whereas miR-322 and miR-451 were upregulated significantly during the development of PAH in both models. Differences were observed between monocrotaline and chronic hypoxia. For example, miR-21 and let-7a were significantly reduced only in monocrotaline-treated rats. MiRNAs that were significantly regulated were validated by quantitative polymerase chain reaction. By using in vitro studies, we demonstrated that hypoxia and growth factors implicated in PAH induced similar changes in miRNA expression. Furthermore, we confirmed miR-21 downregulation in human lung tissue and serum from patients with idiopathic PAH. Conclusion-Defined miRNAs are regulated during the development of PAH in rats. Therefore, miRNAs may contribute to the pathogenesis of PAH and represent a novel opportunity for therapeutic intervention. Key Words: pulmonary hypertension Ⅲ small RNA molecules Ⅲ gene regulation P ulmonary arterial hypertension (PAH) is a complex disorder characterized by the obstructive remodeling of pulmonary arteries, leading to a progressive elevation in pulmonary arterial pressure (PAP) and subsequent right-sided heart failure and death. 1 Familial PAH is associated in 80% of cases with diverse heterozygous mutations in the gene-encoding bone morphogenetic protein receptor 2 (BMPR-II) 2 and can be associated with mutations in the activin-receptor kinaselike 1 gene. 3 The cause of the variable phenotypic expression of PAH among carriers of mutated BMPR-II genes is unclear, and is likely related to environmental and genetic modifiers. Although BMPR-II-related pathways are considered pivotal, many other mediator pathways participate in the pathogenesis of PAH and are being actively investigated, both independently and in combination. For example, the involvement of serotonin in the development of experimental PAH has been recently reported. 4,5 Indeed, important interactions between the serotonin and BMP pathways have recently been described. 6 Rats exposed to hypoxia or injected with the toxin monocrotaline develop pulmonary arterial changes correlated with the development of PAH, including remodeling and elevating PAP.MicroRNAs (miRNAs) are small noncoding transcripts of 16 to 29 nucleotide RNAs that regulate gene expression posttranscriptionally by targeting mRNAs. Animal miRNAs are processed from longer primary transcripts (primary miRNAs) that can contain ...
17β oestradiol is critical to the development of PAH and severe hypoxia-induced PAH in female SERT+ mice. In hPASMCs, 17β oestradiol-induced proliferation is dependant on de novo serotonin synthesis and stimulation of the 5-HT(1B) receptor. These interactions between the serotonin system and 17β oestradiol may contribute to the increased risk of PAH associated with female gender.
Rationale: Despite improved understanding of the underlying genetics, pulmonary arterial hypertension (PAH) remains a severe disease. Extensive remodeling of small pulmonary arteries, including proliferation of pulmonary artery smooth muscle cells (PASMCs), characterizes PAH. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to play a role in vascular remodeling. Objective:We assessed the role of miR-145 in PAH. Methods and Results:We localized miR-145 in mouse lung to smooth muscle. Using quantitative PCR, we demonstrated increased expression of miR-145 in wild-type mice exposed to hypoxia. PAH was evaluated in miR-145 knockout and mice treated with anti-miRs via measurement of systolic right ventricular pressure, right ventricular hypertrophy, and percentage of remodeled pulmonary arteries. miR-145 deficiency and anti-miR-mediated reduction resulted in significant protection from the development of PAH. In contrast, miR-143 anti-miR had no effect. Furthermore, we observed upregulation of miR-145 in lung tissue of patients with idiopathic and heritable PAH compared with unaffected control subjects and demonstrated expression of miR-145 in SMC of remodeled vessels from such patients. Finally, we show elevated levels of miR-145 expression in primary PASMCs cultured from patients with BMPR2 mutations and also in the lungs of BMPR2-deficient mice. Key Words: pulmonary hypertension Ⅲ hypoxia Ⅲ molecular biology Ⅲ smooth muscle cells Ⅲ microRNA Ⅲ smooth muscle differentiation Ⅲ remodeling P ulmonary arterial hypertension (PAH) is a disease of the small pulmonary arteries (PAs), characterized by an increase in PA pressure and vascular remodeling leading to a progressive increase in pulmonary vascular resistance. 1 The consequence of vascular obliteration is right heart failure and high mortality. 2,3 Germline mutations in the gene coding for the bone morphogenetic protein (BMP) type-2 receptor (BMPR2), a receptor for the transforming growth factor (TGF)- superfamily, have been identified in approximately 70% of patients with the heritable form of PAH (hPAH). 4 Moreover, BMPR2 expression is markedly reduced in PAH cases in the absence of mutations in this gene (idiopathic PAH, iPAH). In pulmonary artery smooth muscle cells (PASMCs), mutations in BMPR2 are associated with an abnormal growth response to BMPs and TGF-. 5 In pulmonary artery endothelial cells (PAECs), these mutations increase the susceptibility of cells to apoptosis. 4,6 The absence of BMPR2 mutations in some families and in the majority of iPAH cases suggests that further pathological mechanisms still need to be identified. One of the main histopathologic features common to all forms of PAH is the accumulation of cells expressing smooth muscle specific ␣-actin (SMA) in Original received February 23, 2012; revision received June 11, 2012; accepted June 11, 2012. In May 2012, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.0 days. MicroRNAs (miRNAs) are a class of ...
BackgroundIdiopathic and familial forms of pulmonary arterial hypertension (PAH) occur more frequently in women than men. However, the reason for this remains unknown. Both the calcium binding protein S100A4/Mts1 (Mts1) and its endogenous receptor (receptor for advanced glycosylation end products; RAGE) have been implicated in the development of PAH. We wished to investigate if the Mts1/RAGE pathway may play a role in the gender bias associated with PAH.MethodsWe investigated the effects of gender on development of PAH in mice over-expressing Mts1 (Mts1+ mice) via measurement of pulmonary arterial remodeling, systolic right ventricular pressure (sRVP) and right ventricular hypertrophy (RVH). Gender differences in pulmonary arterial Mts1 and RAGE expression were assessed by qRT-PCR and immunohistochemistry. Western blotting and cell counts were used to investigate interactions between 17β-estradiol, Mts1 and RAGE on proliferation of human pulmonary artery smooth muscle cells (hPASMCs). Statistical analysis was by one-way analysis of variance with Dunnetts post test or two-way analysis of variance with Bonferronis post test, as appropriate.ResultsFemale Mts1+ mice developed increased sRVP and pulmonary vascular remodeling, whereas male Mts1+ mice remained unaffected. The development of plexiform-like lesions in Mts1+ mice was specific to females. These lesions stained positive for both Mts1 and RAGE in the endothelial and adventitial layers. Expression of pulmonary arterial Mts1 was greater in female than male Mts1+ mice, and was localised to the medial and adventitial layers in non plexiform-like pulmonary arteries. RAGE gene expression and immunoreactivity were similar between male and female Mts1+ mice and RAGE staining was localised to the endothelial layer in non plexiform-like pulmonary arteries adjacent to airways. In non-plexiform like pulmonary arteries not associated with airways RAGE staining was present in the medial and adventitial layers. Physiological concentrations of 17β-estradiol increased Mts1 expression in hPASMCs. 17β-estradiol-induced hPASMC proliferation was inhibited by soluble RAGE, which antagonises the membrane bound form of RAGE.ConclusionsMts1 over-expression combined with female gender is permissive to the development of experimental PAH in mice. Up-regulation of Mts1 and subsequent activation of RAGE may contribute to 17β-estradiol-induced proliferation of hPASMCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.