Integrin signaling critically contributes to the progression, growth, and therapy resistance of malignant tumors. Here, we show that targeting of β 1 integrins with inhibitory antibodies enhances the sensitivity to ionizing radiation and delays the growth of human head and neck squamous cell carcinoma cell lines in 3D cell culture and in xenografted mice. Mechanistically, dephosphorylation of focal adhesion kinase (FAK) upon inhibition of β 1 integrin resulted in dissociation of a FAK/cortactin protein complex. This, in turn, downregulated JNK signaling and induced cell rounding, leading to radiosensitization. Thus, these findings suggest that robust and selective pharmacological targeting of β 1 integrins may provide therapeutic benefit to overcome tumor cell resistance to radiotherapy.
Dendritic cells (DCs) are characterized by their unique capacity for primary T cell activation, providing the opportunity for DC-based cancer vaccination protocols. Novel findings reveal that besides their role as potent inducers of tumor-specific T cells, human DCs display additional antitumor effects. Most of these data were obtained with monocyte-derived DCs, whereas studies investigating native blood DCs are limited. In the present study, we analyze the tumoricidal capacity of M-DC8+ DCs, which represent a major subpopulation of human blood DCs. We demonstrate that IFN-γ-stimulated M-DC8+ DCs lyse different tumor cell lines but not normal cells. In addition, we show that tumor cells markedly enhance the production of TNF-α by M-DC8+ DCs via cell-to-cell contact and that this molecule essentially contributes to the killing activity of M-DC8+ DCs. Furthermore, we illustrate the ability of M-DC8+ DCs to promote proliferation, IFN-γ production, and tumor-directed cytotoxicity of NK cells. The M-DC8+ DC-mediated enhancement of the tumoricidal potential of NK cells is mainly dependent on cell-to-cell contact. These results reveal that, in addition to their crucial role in activating tumor-specific T cells, blood DCs exhibit direct tumor cell killing and enhance the tumoricidal activity of NK cells. These findings point to the pivotal role of DCs in triggering innate and adaptive immune responses against tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.