QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, extensible, open-source solution for digital pathology and whole slide image analysis. In addition to offering a comprehensive panel of tumor identification and high-throughput biomarker evaluation tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an extensible platform with which to develop and share new algorithms to analyze complex tissue images. Furthermore, QuPath’s flexible design makes it suitable for a wide range of additional image analysis applications across biomedical research.
The proinflammatory cytokine interleukin-1β (IL-1β) plays a central role in the pathogenesis and the course of inflammatory skin diseases, including psoriasis. Posttranscriptional activation of IL-1β is mediated by inflammasomes; however, the mechanisms triggering IL-1β processing remain unknown. Recently, cytosolic DNA has been identified as a danger signal that activates inflammasomes containing the DNA sensor AIM2. In this study, we detected abundant cytosolic DNA and increased AIM2 expression in keratinocytes in psoriatic lesions but not in healthy skin. In cultured keratinocytes, interferon-γ induced AIM2, and cytosolic DNA triggered the release of IL-1β via the AIM2 inflammasome. Moreover, the antimicrobial cathelicidin peptide LL-37, which can interact with DNA in psoriatic skin, neutralized cytosolic DNA in keratinocytes and blocked AIM2 inflammasome activation. Together, these data suggest that cytosolic DNA is an important disease-associated molecular pattern that can trigger AIM2 inflammasome and IL-1β activation in psoriasis. Furthermore, cathelicidin LL-37 interfered with DNA-sensing inflammasomes, which thereby suggests an anti-inflammatory function for this peptide. Thus, our data reveal a link between the AIM2 inflammasome, cathelicidin LL-37, and autoinflammation in psoriasis, providing new potential targets for the treatment of this chronic skin disease.
Regeneration of central nervous system (CNS) myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells (OPC). In multiple sclerosis (MS), remyelination can fail despite abundant OPC, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS during MS, yet little is known about T cell functions in remyelination. Here, we report that regulatory T cells (Treg) promote oligodendrocyte differentiation and (re)myelination. Treg-deficient mice exhibited significantly impaired remyelination and oligodendrocyte differentiation that was rescued by adoptive transfer of Treg. In brain slice cultures, Treg accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg directly promoted OPC differentiation and myelination in vitro. We identified CCN3 as a novel Treg-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg in the CNS, distinct from immunomodulation. Although originally named ‘Treg’ to reflect immunoregulatory roles, this also captures emerging, regenerative Treg functions aptly.
Background We analysed incidence, predictors, histological features and specific treatment options of anti-tumour necrosis factor α (TNF-α) antibody-induced psoriasiform skin lesions in patients with inflammatory bowel diseases (IBD). Design Patients with IBD were prospectively screened for anti-TNF-induced psoriasiform skin lesions. Patients were genotyped for IL23R and IL12B variants. Skin lesions were examined for infiltrating Th1 and Th17 cells. Patients with severe lesions were treated with the anti-interleukin (IL)-12/IL-23 p40 antibody ustekinumab. Results Among 434 anti-TNF-treated patients with IBD, 21 (4.8%) developed psoriasiform skin lesions. Multiple logistic regression revealed smoking ( p=0.007; OR 4.24, 95% CI 1.55 to 13.60) and an increased body mass index ( p=0.029; OR 1.12, 95% CI 1.01 to 1.24) as main predictors for these lesions. Nine patients with Crohn's disease and with severe psoriasiform lesions and/or anti-TNF antibody-induced alopecia were successfully treated with the anti-p40-IL-12/IL-23 antibody ustekinumab (response rate 100%). Skin lesions were histologically characterised by infiltrates of IL-17A/IL-22-secreting T helper 17 (Th17) cells and interferon (IFN)-γ-secreting Th1 cells and IFN-α-expressing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.