BackgroundConstitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking.Methodology/Principal FindingsWe have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies.Conclusion/SignificanceThe ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75–80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs.
Adult stem cells are promising cellular vehicles for therapy of malignant gliomas as they have the ability to migrate into these tumors and even track infiltrating tumor cells. However, their clinical use is limited by a low passaging capacity that impedes large-scale production. In the present study, a bone marrow-derived, highly proliferative subpopulation of mesenchymal stem cells (MSCs)-here termed bone marrow-derived tumor-infiltrating cells (BM-TICs)-was genetically modified for the treatment of malignant glioma. Upon injection into the tumor or the vicinity of the tumor, BM-TICs infiltrated solid parts as well as the border of rat 9L glioma. After intra-tumoral injection, BM-TICs expressing the thymidine kinase of herpes simplex virus (HSV-tk) and enhanced green fluorescent protein (BM-TIC-tk-GFP) were detected by non-invasive positron emission tomography (PET) using the tracer 9-[4-[(18)F]fluoro-3-hydroxymethyl)butyl]guanine ([(18)F]FHBG). A therapeutic effect was demonstrated in vitro and in vivo by BM-TICs expressing HSV-tk through bystander-mediated glioma cell killing. Therapeutic efficacy was monitored by PET as well as by magnetic resonance imaging (MRI) and strongly correlated with histological analysis. In conclusion, BM-TICs expressing a suicide gene were highly effective in the treatment of malignant glioma in a rat model and therefore hold great potential for the therapy of malignant brain tumors in humans.
Adult stem cells are promising cellular vehicles for therapy of malignant gliomas as they have the ability to migrate into these tumors and even track infiltrating tumor cells. However, their clinical use is limited by a low passaging capacity that impedes large-scale production. In the present study, a bone marrow-derived, highly proliferative subpopulation of mesenchymal stem cells (MSCs)-here termed bone marrow-derived tumor-infiltrating cells (BM-TICs)-was genetically modified for the treatment of malignant glioma. Upon injection into the tumor or the vicinity of the tumor, BM-TICs infiltrated solid parts as well as the border of rat 9L glioma. After intra-tumoral injection, BM-TICs expressing the thymidine kinase of herpes simplex virus (HSV-tk) and enhanced green fluorescent protein (BM-TIC-tk-GFP) were detected by non-invasive positron emission tomography (PET) using the tracer 9-[4-[(18)F]fluoro-3-hydroxymethyl)butyl]guanine ([(18)F]FHBG). A therapeutic effect was demonstrated in vitro and in vivo by BM-TICs expressing HSV-tk through bystander-mediated glioma cell killing. Therapeutic efficacy was monitored by PET as well as by magnetic resonance imaging (MRI) and strongly correlated with histological analysis. In conclusion, BM-TICs expressing a suicide gene were highly effective in the treatment of malignant glioma in a rat model and therefore hold great potential for the therapy of malignant brain tumors in humans.
<b><i>Background: </i></b>Over the last 2 decades, cord blood (CB) has become an important source of blood stem cells. Clinical experience has shown that CB is a viable source for blood stem cells in the field of unrelated hematopoietic blood stem cell transplantation. <b><i>Methods: </i></b>Studies of CB units (CBUs) stored and ordered from the US (National Marrow Donor Program (NMDP) and Swiss (Swiss Blood Stem Cells (SBSC)) CB registries were conducted to assess whether these CBUs met the needs of transplantation patients, as evidenced by units being selected for transplantation. These data were compared to international banking and selection data (Bone Marrow Donors Worldwide (BMDW), World Marrow Donor Association (WMDA)). Further analysis was conducted on whether current CB banking practices were economically viable given the units being selected from the registries for transplant. It should be mentioned that our analysis focused on usage, deliberately omitting any information about clinical outcomes of CB transplantation. <b><i>Results:</i></b> A disproportionate number of units with high total nucleated cell (TNC) counts are selected, compared to the distribution of units by TNC available. Therefore, the decision to use a low threshold for banking purposes cannot be supported by economic analysis and may limit the economic viability of future public CB banking. <b><i>Conclusions:</i></b> We suggest significantly raising the TNC level used to determine a bankable unit. A level of 125 × 10<sup>7</sup> TNCs, maybe even 150 × 10<sup>7</sup> TNCs, might be a viable banking threshold. This would improve the return on inventory investments while meeting transplantation needs based on current selection criteria.
Sensitivity, specificity, and PPV of the Rivalta test for the diagnosis of FIP were lower than previously reported except when used in young cats. The components in effusions that lead to a positive Rivalta test remain unknown, but the positivity is not simply related to high total protein concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.