SummaryRickettsia conorii, an obligate intracellular tickborne pathogen and the causative agent of Mediterranean spotted fever, binds to and invades non-phagocytic mammalian cells. Previous work identified Ku70 as a mammalian receptor involved in the invasion process and identified the rickettsial autotransporter protein, rOmpB, as a ligand; however, little is known about the role of Ku70-rOmpB interactions in the bacterial invasion process. Using an Escherichia coli heterologous expression system, we show here that rOmpB mediates attachment to mammalian cells and entry in a Ku70-dependent process. A purified recombinant peptide corresponding to the rOmpB passenger domain interacts with Ku70 and serves as a competitive inhibitor of adherence. We observe that rOmpB-mediated infection culminates in actin recruitment at the bacterial foci, and that this entry process relies in part on actin polymerization likely imparted through protein tyrosine kinase and phosphoinositide 3-kinase-dependent activities and microtubule stability. Small-interfering RNA studies targeting components of the endocytic pathway reveal that entry by rOmpB is dependent on c-Cbl, clathrin and caveolin-2. Together, these results illustrate that rOmpB is sufficient to mediate Ku70-dependent invasion of mammalian cells and that clathrin-and caveolin-dependent endocytic events likely contribute to the internalization process.
cThe LytR-CpsA-Psr (LCP) proteins are thought to transfer bactoprenol-linked biosynthetic intermediates of wall teichoic acid (WTA) to the peptidoglycan of Gram-positive bacteria. In Bacillus subtilis, mutants lacking all three LCP enzymes do not deposit WTA in the envelope, while Staphylococcus aureus ⌬lcp mutants display impaired growth and reduced levels of envelope phosphate. We show here that the S. aureus ⌬lcp mutant synthesized WTA yet released ribitol phosphate polymers into the extracellular medium. Further, ⌬lcp mutant staphylococci no longer restricted the deposition of LysM-type murein hydrolases to cell division sites, which was associated with defects in cell shape and increased autolysis. Mutations in S. aureus WTA synthesis genes (tagB, tarF, or tarJ2) inhibit growth, which is attributed to the depletion of bactoprenol, an essential component of peptidoglycan synthesis (lipid II). The growth defect of S. aureus tagB and tarFJ mutants was alleviated by inhibition of WTA synthesis with tunicamycin, whereas the growth defect of the ⌬lcp mutant was not relieved by tunicamycin treatment or by mutation of tagO, whose product catalyzes the first committed step of WTA synthesis. Further, sortase A-mediated anchoring of proteins to peptidoglycan, which also involves bactoprenol and lipid II, was not impaired in the ⌬lcp mutant. We propose a model whereby the S. aureus ⌬lcp mutant, defective in tethering WTA to the cell wall, cleaves WTA synthesis intermediates, releasing ribitol phosphate into the medium and recycling bactoprenol for peptidoglycan synthesis.
The pathogenesis of spotted fever group (SFG) Rickettsia species, including R. conorii and R. rickettsii, is acutely dependent on adherence to and invasion of host cells, including cells of the mammalian endothelial system. Bioinformatic analyses of several rickettsia genomes revealed the presence of a cohort of genes designated sca genes that are predicted to encode proteins with homology to autotransporter proteins of Gram-negative bacteria. Previous work demonstrated that three members of this family, rOmpA (Sca0), Sca2, and rOmpB (Sca5) are involved in the interaction with mammalian cells; however, very little was known about the function of other conserved rickettsial Sca proteins. Here we demonstrate that sca1, a gene present in nearly all SFG rickettsia genomes, is actively transcribed and expressed in R. conorii cells. Alignment of Sca1 sequences from geographically diverse SFG Rickettsia species showed that there are high degrees of sequence identity and conservation of these sequences, suggesting that Sca1 may have a conserved function. Using a heterologous expression system, we demonstrated that production of R. conorii Sca1 in the Escherichia coli outer membrane is sufficient to mediate attachment to but not invasion of a panel of cultured mammalian epithelial and endothelial cells. Furthermore, preincubation of a recombinant Sca1 peptide with host cells blocked R. conorii cell association. Together, these results demonstrate that attachment to mammalian cells can be uncoupled from the entry process and that Sca1 is involved in the adherence of R. conorii to host cells.
Background: Staphylococcus aureus LcpABC attach wall teichoic acids (WTA) to peptidoglycan. Results: S. aureus capsular polysaccharide (CP5) is linked to peptidoglycan in a manner requiring lcpABC genes. Conclusion: Unlike WTA, CP5 attachment is mediated preferentially by LcpC. Significance: LCP proteins display substrate preferences for the transfer of undecaprenyl-bound polymers to peptidoglycan.
Pathogenic rickettsiae are the causative agents of Rocky Mountain spotted fever, typhus, and other human diseases with high mortality and an important impact on society. Although survivors of rickettsial infections are considered immune to disease, the molecular basis of this immunity or the identification of protective antigens that enable vaccine development was hitherto not known. By exploring the molecular pathogenesis of Rickettsia conorii, the agent of Mediterranean spotted fever, we report here that the autotransporter protein, rickettsial outer membrane protein B (rOmpB), constitutes a protective antigen for this group of pathogens. A recombinant, purified rOmpB passenger domain fragment comprised of amino acids 36 to 1334 is sufficient to elicit humoral immune responses that protect animals against lethal disease. Protective immunity requires folded antigen and production of antibodies that recognize conformational epitopes on the rickettsial surface. Monoclonal antibodies (MAbs) 5C7.27 and 5C7.31, which specifically recognize a conformation present in the folded, intact rOmpB passenger domain, are sufficient to confer immunity in vivo. Analyses in vitro indicate this protection involves a mechanism of complement-mediated killing in mammalian blood, a means of rickettsial clearance that has not been previously described. Considering the evolutionary conservation of rOmpB and its crucial contribution to bacterial invasion of host cells, we propose that rOmpB antibody-mediated killing confers immunity to rickettsial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.