A fourth wheel: Two sets of bifunctional AB(2)C dendrimers having internal acetylene/azides and external hydroxy groups were constructed utilizing benign synthetic protocols. An in situ postfunctionalization strategy was successfully carried out to illustrate the chemoselective nature of these dendrimers. The dendrimers were also transformed into dendritic nanoparticles or utilized as dendritic crosslinkers for the fabrication hydrogels.
By taking advantage of the orthogonal nature of thiol-ene coupling and anhydride based esterification reactions, a facile and chemoselective strategy to dendritic macromolecules has been developed. The ability to interchange growth steps based on thiol-ene and anhydride chemistry allows the synthesis of fifth-generation dendrimers in only five steps and under benign reaction conditions. In addition, the presented coupling chemistries eliminate the traditional need for protection/deprotection steps and afford dendrimers in high yield and purity. The modularity of this strategy coupled with the latent reactivity of the alkene/hydroxyl chain ends was demonstrated by using different cores (alkene and hydroxyl functional), various AB 2 and CD 2 monomers and a range of chain end groups. As a result, three dendritic libraries were prepared which exhibited tunability of both the chemical functionality and physical properties including the fabrication of PEG hydrogels.
Well-defined dendronized cellulose substrates displaying multiple representations of dual-functionality were constructed by taking advantage of the efficiency of the click reaction combined with traditional anhydride chemistry. First, activated cellulose surfaces were decorated with several generations of dendrons, and their peripheral reactive groups were subsequently reacted with a trifunctional orthogonal monomer. The generated substrate tool box was successfully explored by accurately tuning the surface function using a versatile orthogonal dual postfunctionalization approach. In general, the reactions were monitored by using a click-dye reagent or a quartz crystal microbalance (QCM) technique, and the resulting surfaces were well-characterized using XPS, FT-IR, and contact angle measurements. Utilizing this approach two different surfaces have been obtained; that is, triethylenglycol oligomers and amoxicillin molecules were efficiently introduced to the dendritic surface. As a second example, mannose-decorated hydroxyl functional surfaces illustrated their potential as biosensors by multivalent detection of lectin protein at concentration as low as 5 nM.
We report in this paper the use of free-radical thiol-ene coupling (TEC) for the introduction of carbohydrate, poly(ethylene glycol), and peptide fragments at the periphery of an alkene functional dendrimer. Four different sugar thiols including glucose, mannose, lactose and sialic acid, two PEGylated thiols and the natural tripeptide glutathione were reacted with a fourth generation alkene functional dendrimer [G4]-ene48 upon irradiation at λmax 365 nm. In all cases, the 1H NMR spectra of the crude reaction mixture revealed the complete disappearance of alkene proton signals indicating the quantitative conversion of all 48 alkene groups of the dendrimer. With one exception only, all dendrimer conjugates were isolated in high yields (70–94%), validating the high efficiency of multiple TEC reactions on a single substrate. All isolated and purified compounds were analyzed by MALDI-TOF spectrometry and gave spectra consistent with the assigned structure.
Zwei Sätze von difunktionellen AB2C‐Dendrimeren mit internen Acetylen/Azid‐ und externen Hydroxygruppen wurden synthetisiert. Eine erfolgreiche Funktionalisierung in situ belegte das chemoselektive Verhalten der Dendrimere, die außerdem in dendritische Nanopartikel umgewandelt oder als dendritische Vernetzer beim Aufbau von Hydrogelen eingesetzt werden konnten.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.