Cannabis is a diverse and polymorphic species. To better understand cannabinoid synthesis inheritance and its impact on pathogen resistance, we shotgun sequenced and assembled a Cannabis trio (sibling pair and their offspring) utilizing long read single molecule sequencing. This resulted in the most contiguous Cannabis sativa assemblies to date. These reference assemblies were further annotated with full-length male and female mRNA sequencing (Iso-Seq) to help inform isoform complexity, gene model predictions and identification of the Y chromosome. To further annotate the genetic diversity in the species, 40 male, female, and monoecious cannabis and hemp varietals were evaluated for copy number variation (CNV) and RNA expression. This identified multiple CNVs governing cannabinoid expression and 82 genes associated with resistance to Golovinomyces chicoracearum, the causal agent of powdery mildew in cannabis. Results indicated that breeding for plants with low tetrahydrocannabinolic acid (THCA) concentrations may result in deletion of pathogen resistance genes. Low THCA cultivars also have a polymorphism every 51 bases while dispensary grade high THCA cannabis exhibited a variant every 73 bases. A refined genetic map of the variation in cannabis can guide more stable and directed breeding efforts for desired chemotypes and pathogen-resistant cultivars. Sequence and annotation of 42 cannabis genomes reveals extensive copy number variation in cannabinoid synthesis and pathogen resistance genes
Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.
Cannabinoid expression is an important genetically determined feature of cannabis that presents clinical and legal implications for patients seeking cannabinoid specific therapies like Cannabidiol (CBD). Cannabinoid, terpenoid, and flavonoid marker assisted selection can accelerate breeding efforts by offering genetic tools to select for desired traits at an early stage in growth. To this end, multiple models for chemotype inheritance have been described suggesting a complex picture for chemical phenotype determination. Here we explore the potential role of copy number variation of THCA Synthase using phased single molecule sequencing and demonstrate that copy number and sequence variation of this gene is common and suggests a more nuanced view of chemotype prediction.
The Center for Disease Control estimates 128,000 people in the U.S. are hospitalized annually due to food borne illnesses. This has created a demand for food safety testing targeting the detection of pathogenic mold and bacteria on agricultural products. This risk extends to medical Cannabis and is of particular concern with inhaled, vaporized and even concentrated Cannabis products . As a result, third party microbial testing has become a regulatory requirement in the medical and recreational Cannabis markets, yet knowledge of the Cannabis microbiome is limited. Here we describe the first next generation sequencing survey of the fungal communities found in dispensary based Cannabis flowers by ITS2 sequencing, and demonstrate the sensitive detection of several toxigenic Penicillium and Aspergillus species, including P. citrinum and P. paxilli, that were not detected by one or more culture-based methods currently in use for safety testing.
We describe the use of a Decentralized Autonomous Organization (DAO) to crypto-fund the single molecule sequencing and publication of a Type II Cannabis plant. This resulted in the construction of the most contiguous Cannabis genome assembly to date. The combined use of the Dash cryptocurrency, DAOs, and Pacific Biosciences sequencing delivered a 1.03 Gb genome with a N50 of 665Kb in 77 days from funding to public upload. This represents a 230 fold improvement in the contiguity of the first cannabis assemblies in 2011 and a 4 fold improvement over all cannabis assemblies to date. 34Gb of additional sequencing pushed the assembly to a N50 of 3.8Mb. Hi-C data from Phase Genomics further scaffolded the assembly to 35 contigs at an N50 of 74Mb but requires additional curation. The genome is partially phased and larger than previously reported (2N = 1.33Gb). The CBCA, THCA and CBDA synthase gene clusters have been phased onto respective contigs demonstrating tandem repeat expansions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.