Co-translational protein targeting to the endoplasmic reticulum (ER), represents an evolutionary-conserved mechanism to target proteins into the secretory pathway. In this targeting pathway proteins possessing signal sequences are recognised at the ribosome by the signal recognition particle while they are still undergoing synthesis. This triggers their delivery to the ER protein translocation channel, where they are directly translocated into the ER. Here we review the current understanding of this translocation pathway and how molecular details obtained in the related bacterial system have provided insight into the mechanism of targeting and translocation. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Peroxisomes are pleiomorphic, metabolically plastic organelles. Their essentially oxidative function led to the adoption of the name 'peroxisome'. The dynamic and diverse nature of peroxisome metabolism has led to the realisation that peroxisomes are an important source of signalling molecules that can function to integrate cellular activity and multicellular development. In plants defence against predators and a hostile environment is of necessity a metabolic and developmental response--a plant has no place to hide. Mutant screens are implicating peroxisomes in disease resistance and signalling in response to light. Characterisation of mutants disrupted in peroxisomal beta-oxidation has led to a growing appreciation of the importance of this pathway in the production of jasmonic acid, conversion of indole butyric acid to indole acetic acid and possibly in the production of other signalling molecules. Likewise the role of peroxisomes in the production and detoxification of reactive oxygen, and possibly reactive nitrogen species and changes in redox status, suggests considerable scope for peroxisomes to contribute to perception and response to a wide range of biotic and abiotic stresses. Whereas the peroxisome is the sole site of beta-oxidation in plants, the production and detoxification of ROS in many cell compartments makes the specific contribution of the peroxisome much more difficult to establish. However progress in identifying peroxisome specific isoforms of enzymes associated with ROS metabolism should allow a more definitive assessment of these contributions in the future.
The Arabidopsis ABC transporter Comatose (CTS; AtABCD1) is required for uptake into the peroxisome of a wide range of substrates for -oxidation, but it is uncertain whether CTS itself is the transporter or if the transported substrates are free acids or CoA esters. To establish a system for its biochemical analysis, CTS was expressed in Saccharomyces cerevisiae. The plant protein was correctly targeted to yeast peroxisomes, was assembled into the membrane with its nucleotide binding domains in the cytosol, and exhibited basal ATPase activity that was sensitive to aluminum fluoride and abrogated by mutation of a conserved Walker A motif lysine residue. The yeast pxa1 pxa2⌬ mutant lacks the homologous peroxisomal ABC transporter and is unable to grow on oleic acid. Consistent with its exhibiting a function in yeast akin to that in the plant, CTS rescued the oleate growth phenotype of the pxa1 pxa2⌬ mutant, and restored -oxidation of fatty acids with a range of chain lengths and varying degrees of desaturation. When expressed in yeast peroxisomal membranes, the basal ATPase activity of CTS could be stimulated by fatty acyl-CoAs but not by fatty acids. The implications of these findings for the function and substrate specificity of CTS are discussed.Peroxisomes perform a range of different functions, including -oxidation of fatty acids (FA) 2 and synthesis and degradation of bioactive, lipid-derived molecules. Import of substrates for peroxisomal metabolism is mediated by ATP binding cassette (ABC) transporters belonging to subclass D (1, 2). ABC transporters are composed of a minimum of four functional domains: two transmembrane domains, involved in substrate binding and translocation, and two nucleotide binding domains (NBDs) that bind and hydrolyze ATP, providing energy for transport (3, 4). The domains may be fused into a single polypeptide, but are frequently expressed as half-size transporters composed of a transmembrane domain fused to an NBD, which hetero-or homodimerize to form a functional transporter. Bakers' yeast (Saccharomyces cerevisiae) contains two ABCD genes that encode half-size ABC proteins: Pxa1p (peroxisomal ABC-transporter 1), and Pxa2p (5-7). The single pxa1⌬ and pxa2⌬ deletion mutants are unable to grow on oleate (C18:1) as the sole carbon source and exhibit reduced -oxidation of this long-chain FA. It has been proposed that Pxa1p and Pxa2p operate as a heterodimer to form a functional transporter (6,8,9), which has been shown by indirect evidence to be required for the peroxisomal transport of the C18:1-CoA, a long-chain acyl-CoA ester, but not for import of C8:0-CoA (10). In contrast, medium-chain FAs enter yeast peroxisomes as free acids independently of Pxa1p/Pxa2p, and are activated by peroxisomal acyl-CoA synthetase, Faa2p, prior to -oxidation (6).The human ABCD transporter subfamily comprises four half-size members: adrenoleukodystrophy protein (ALDP), ALD-related protein, the 70-kDa peroxisomal membrane protein (PMP70), and PMP70-related protein (PMP70R/PMP69) (1, 2). Although...
Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13. Hence, overexpression of the SGTA-binding region of Rpn13 or point mutations within the SGTA TPR domain both inhibit SGTA binding to the proteasome and substantially reduce MLP levels. These findings suggest that SGTA can regulate the access of MLPs to the proteolytic core of the proteasome, implying that a protein quality control cycle that involves SGTA and the BAG6 complex can operate at the 19S regulatory particle. We speculate that the binding of SGTA to Rpn13 enables specific polypeptides to escape proteasomal degradation and/or selectively modulates substrate degradation.
Constrained binding peptides (peptide aptamers) may serve as tools to explore protein conformations and disrupt protein-protein interactions. The quality of the protein scaffold, by which the binding peptide is constrained and presented, is of crucial importance. SQT (Stefin A Quadruple Mutant-Tracy) is our most recent development in the Stefin A-derived scaffold series. Stefin A naturally uses three surfaces to interact with its targets. SQT tolerates peptide insertions at all three positions. Peptide aptamers in the SQT scaffold can be expressed in bacterial, yeast and human cells, and displayed as a fusion to truncated pIII on phage. Peptides that bind to CDK2 can show improved binding in protein microarrays when presented by the SQT scaffold. Yeast two-hybrid libraries have been screened for binders to the POZ domain of BCL-6 and to a peptide derived from PBP2', specific to methicillin-resistant Staphylococcus aureus. Presentation of the Noxa BH3 helix by SQT allows specific interaction with Mcl-1 in human cells. Together, our results show that Stefin A-derived scaffolds, including SQT, can be used for a variety of applications in cellular and molecular biology. We will henceforth refer to Stefin A-derived engineered proteins as Scannins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.