Cytokinin deficiency causes pleiotropic developmental changes such as reduced shoot and increased root growth. It was investigated whether cytokinin-deficient tobacco plants, which overproduce different cytokinin oxidase/dehydrogenase enzymes, show changes in different sink and source parameters, which could be causally related to the establishment of the cytokinin deficiency syndrome. Ultrastructural analysis revealed distinct changes in differentiating shoot tissues, including an increased vacuolation and an earlier differentiation of plastids, which showed partially disorganized thylakoid structures later in development. A comparison of the ploidy levels revealed an increased population of cells with a 4C DNA content during early stages of leaf development, indicating an inhibited progression from G2 to mitosis. To compare physiological characteristics of sink leaves, source leaves and roots of wild-type and cytokinin-deficient plants, several photosynthetic parameters, content of soluble sugars, starch and adenylates, as well as activities of enzymes of carbon assimilation and dissimilation were determined. Leaves of cytokinin-deficient plants contained less chlorophyll and non-photochemical quenching of young leaves was increased. However, absorption rate, photosynthetic capacity (Fv/Fm and JCO2max) and efficiency (ΦCO2app), as well as the content of soluble sugars, were not strongly altered in source leaves, indicating that chlorophyll is not limiting for photoassimilation and suggesting that source strength did not restrict shoot growth. By contrast, shoot sink tissues showed drastically reduced contents of soluble sugars, decreased activities of vacuolar invertases, and a reduced ATP content. These results strongly support a function of cytokinin in regulating shoot sink strength and its reduction may be a cause of the altered shoot phenotype. Roots of cytokinin-deficient plants contained less sugar compared with wild-type. However, this did not negatively affect glycolysis, ATP content, or root development. It is suggested that cytokinin-mediated regulation of the sink strength differs between roots and shoots.
1. We aimed to demonstrate reproducible nutrition and growth of macrophytes in non-axenic laboratory cultures preventing growth of phytoplankton and epiphytes. 2. Macrophyte shoot segments were planted in a mixture of commercial acid-washed silica sand with crystalline tricalcium phosphate, and this artificial sediment was covered with a layer of pure silica sand. The liquid mineral media used did not contain phosphorus but were rich in all other nutrient elements. A CO 2 reservoir provided sustainable CO 2 supply to macrophyte cultures by gas diffusion through a polyethylene membrane. 3. Chara hispida, Chara tomentosa, Chara baltica, Elodea canadensis, Potamogeton pectinatus and Zanichellia palustris could be cultivated for long term without medium exchange and aeration. Microalgae growth was prevented by the absence of phosphate in the water column. Mobilisation of tricalcium phosphate and phosphate uptake by the rhizoids of C. hispida enabled sustainable rapid shoot growth and increased the concentration of inorganic phosphate in the shoot dry weight by five to six times in comparison with plants cultivated on pure silica sand. A significant growth support from tricalcium phosphate was also observed for E. canadensis, but the rate of phosphate uptake by the roots was not sufficient to maintain a storage pool of inorganic phosphate (P i ) in the growing shoots of this plant. 4. Membrane-controlled CO 2 supply from a reservoir and artificial sediments like the one described provide attractive options for the laboratory culture of macrophytes.
Low oxygen stress in plants can occur during flooding and compromise the availability and utilization of carbohydrates in root and shoot tissues. Low-oxygen-tolerant rice and -sensitive wheat plants were analyzed under anaerobiosis in light to evaluate main factors of the primary metabolism that affect sensitivity against oxygen deprivation: activity of glycolysis and the rate of photosynthesis. Relatively stable ATP contents (93 and 58% of aerated control levels after 24 h anaerobiosis) in illuminated shoot tissues account for enhanced tolerance of rice and wheat seedlings to anaerobiosis upon light exposure in comparison to anoxia in darkness. Although the photosynthetic process was inhibited during low oxygen stress, which was partly due to CO(2) deficiency, more light-exposed than dark-incubated seedlings survived. Illuminated plants could tolerate a 70% lower anaerobic ethanol production in shoots in comparison to darkness, although still an 18-times higher ethanol production rate was determined in rice than in wheat leaves. In conclusion, light-exposed plants grown under anaerobiosis may recycle low amounts of generated oxygen between photosynthesis and dissimilation and generate additional energy not only from substrate phosphorylation during glycolysis but also from other sources like cyclic electron transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.