CD14(+)S100A9(+) inflammatory monocytes in patients with NSCLC are a distinct subset of MDSCs, which suppress T cells by arginase, iNOS, and the IL-13/IL-4Rα axis. The amount of these inflammatory monocytes is associated with poor response to chemotherapy. Clinical trial registered with www.clinicaltrials.gov (NCT 01204307).
Our study investigated whether tumor-associated macrophages (TAMs) in advanced non-small cell lung cancer (NSCLC) are related to treatment response to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and may be a predictor of survival. Of 206 advanced NSCLC patients treated (first-line) with an EGFR-TKI at the study hospital from 2006 to 2009, 107 with adequate specimens for assessing CD68 immunohistochemistry as a marker of TAMs were assessed. After EGFR-TKI treatment, response was observed in 55 (51%) patients, and the median follow-up period was 13.5 months. Most TAMs were located in the tumor stroma (>95%) and positively costained with the M2 marker CD163. TAM counts were significantly higher in patients with progressive disease than in those without (p < 0.0001), a trend that remained in patients with known EGFR mutation status (n 5 59) and those with wild-type EGFR (n 5 20). High TAM counts, among other factors (e.g., wild-type EGFR), were significantly related to poor progression-free survival (PFS) and overall survival (OS) (all p < 0.0001 for TAMs). Multivariate Cox analyses showed that high TAM counts and EGFR mutations were both independent factors associated with PFS [odds ratio (OR), 8.0; 95% confidence interval (CI), 2.87-22.4; p 5 0.0001 and OR, 0.03; 95% CI, 0.003-0.31; p 5 0.003, respectively] and OS (OR, 2.641; 95% CI, 1.08-6.5; p 5 0.03 and OR, 0.14; 95% CI, 0.03-0.56; p 5 0.006, respectively). TAMs are related to treatment response irrespective of EGFR mutation and can independently predict survival in advanced NSCLC treated with an EGFR-TKI.
NF-κB repressing factor (NRF), a nuclear inhibitor of NF-κB, is constitutively expressed and is implicated in the basal silencing of specific NF-κB targeting genes, including IFN-β, IL-8/CXCL8, and iNOS. Little is known about the regulation of NRF and its role in response to stimuli. Airway smooth muscle (ASM) is a rich source of inflammatory mediators that may regulate the development and progression of airway inflammation. We have previously reported that NE activates NF-κB in primary human ASM (hASM), leading to induction of TGF-β1. In this study, we describe that, instead of inducing the NF-κB response gene IL-8/CXCL8, NE suppressed IL-8/CXCL8 release and mRNA expression in hASM cells. Transcriptional blockade studies using actinomycin D revealed a similar degradation rate of IL-8/CXCL8 mRNA in the presence or absence of NE, suggesting an involvement at the transcription level. Mechanistically, the NE repressive effect was mediated by inducing NRF, as shown by RT-PCR and Western blotting, which was subsequently recruited to the native IL-8/CXCL8 promoter leading to removal of RNA polymerase II from the promoter, as demonstrated by chromatin immunoprecipitation assays. Knockdown of NRF by small interfering RNA prevented NE-induced suppression of IL-8/CXCL8 expression. In contrast, NE did not induce NRF expression in A549 and Beas-2B cells, where NE only stimulates NF-κB activation and IL-8/CXCL8 induction. Forced expression of NRF in A549 cells by an NRF expression plasmid suppressed IL-8/CXCL8 expression. Hence, we describe a novel negative regulatory mechanism of NE-induced NRF, which is restricted to hASM and mediates the suppression of IL-8/CXCL8 expression.
Chronic systemic inflammation is implicated in the systemic manifestations and, probably, the excess mortality risk of chronic obstructive pulmonary disease (COPD). The role of nuclear factor (NF)-kB repressing factor (NRF), a DNA-binding, protein-inhibiting NF-kB response gene, in human diseases has not been explored. We hypothesised that the NRF-negative regulatory mechanism is impaired in COPD peripheral blood mononuclear cells (PBMCs) leading to excessive interleukin (IL)-8/CXCL8 production.NRF expression, NF-kB activation, IL-8/CXCL8 release and intracellular oxidative stress were assessed in PBMCs of normal subjects and stable COPD patients. Primary PBMCs with NRF overexpression, NRF knockdown and exposure to H 2 O 2 were used to elucidate the mechanisms.Stable COPD patients, especially those with severe COPD, showed decreased NRF expression, enhanced NF-kB activation and increased IL-8/CXCL8 release in PBMCs compared with normal subjects. This was associated with reduced NRF and increased RNA polymerase II occupancy at the IL-8/CXCL8 promoter. NRF knockdown enhanced IL-8/CXCL8 production in normal PBMCs, whilst NRF overexpression attenuated IL-8/CXCL8 production. Intracellular oxidative stress was increased in COPD PBMCs. H 2 O 2 -decreased NRF expression and -enhanced IL-8/CXCL8 production was augmented in COPD PBMCs.NRF expression is reduced in PBMCs of stable COPD patients, probably through oxidative stress, leading to increased production of IL-8/CXCL8 and potentially chronic systemic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.