Abstract. The subject of the research is the study of anomalous disturbances of the gradient of electric field potential of the atmosphere as possible precursors of earthquakes.In order to reveal such precursor Dusheti observatory (ϕ=42.05; λ=44.42) records of electric field potential's gradient (EFPG) of the atmosphere are considered for 41 earthquakes (M≥5.0) occurrence moments in the Caucasus region.Seasonal variations of atmospheric electric field potential gradient and inter overlapping influence of meteorological parameters upon this parameter are studied. Original method of "filtration" is devised and used in order to identify the effect of EFPG "clear" anomalies.The so-called "clear" anomalies are revealed from (−148.9 V/m) to 188.5 V/m limits and they are connected with occurrence moments of 29 earthquakes out of 41 discussed earthquakes (about 71%). "clear" anomalies manifest themselves in 11-day precursor window.Duration of anomalies is from 40 to 90 min.
Very low frequency (VLF) electromagnetic radiation (in diapason 1 kHz – 1 MHz) in atmosphere, generated during earthquake preparation period, may be connected with linear size, characterizing incoming earthquake source. In order to argue this hypothesis very simple quasi-electrostatic model is used: local VLF radiation may be the manifestation of own electromagnetic oscillations of concrete seismoactive segments of lithosphere-atmosphere system. This model explains qualitatively well-known precursor effects of earthquakes. At the same time, it will be principally possible to forecast expected earthquake with certain precision if we use this model after diagnosing existed data. <br><br> As physical basis of working hypothesis is atmospheric effect of polarization charges occurred in surface layer of the Earth, it is possible to test the below constructed model in medium, where reasons of polarization charge generation may be different from piezoelectric mechanism, for example, due to electrolytic hydration
Abstract. Very low frequency (VLF) electromagnetic radiation (in diapason 1 kHz-1 MHz) in the atmosphere, generated during an earthquake preparation period, may be connected with the linear size characterising the expected earthquake focus. In order to argue this hypothesis, a very simple quasi-electrostatic model is used: the local VLF radiation may represent the self-generated (own) electromagnetic oscillations of interactive seismoactive segments of the lithosphere-atmosphere system. This model qualitatively explains the well-known precursor effects of earthquakes. In addition, using this model after diagnosing existing data makes it principally possible to forecast an expected earthquake with certain precision.As a physical basis of the working hypothesis is the atmospheric effect of polarization charges occurring in the surface layer of the Earth, it is possible to test the following constructed model in the Earth's crust, where the reason for polarization charge generation may be different from piezoelectric mechanism, e.g., some other mechanism.
Abstract.The present paper deals with an attempt to check the theoretical model of self-generated seismoelectromagnetic oscillations of LAI system on the basis of retrospective data.Application of the offered simple model enables one to explain qualitatively the mechanism of VLF electromagnetic emission initiated in the process of an earthquake preparation. Besides, the model enables us to associate telluric character geoelectric and geomagnetic perturbations incited by rock polarization and self-generated electromagnetic oscillations of lithosphere-atmosphere system. L'Aquila earthquake taken as an example to isolate reliably the Earth VLF emission from the magnetospheric electromagnetic emission of the same frequency range, MHD criterion is offered together with geomagnetic activity indexes.On the basis of the considered three earthquakes, according to the opinion of authors the model of self-generated seismo-electromagnetic oscillations of the LAI system will enable us to approach the problem of resolution of earthquake prediction with certain accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.