An actual trend in applied ecology is the development and implementation of innovative environmental protection technologies. Modern methods for extracting heavy metal ions from industrial wastewater are quite diverse. The purpose of the study was to develop and justify new technologies for purification of aqueous media, including adsorption purification, from heavy metal ions (by the example of Ni2+ and Cd2+ ions). Laboratory studies have established that the degree of adsorption extraction of Ni2+ ions by the sorption material from bentonite modified with carbon nanotubes and fired at a temperature of 550 °C increases by 13-14% due to its activation with 18% HCl solution and 38% CaCl2 solution, and the degree of adsorption extraction of Cd2+ ions with this activation of the sorbent, it increases by 16-17%. A technological scheme of a water purification station is proposed, which includes highly efficient adsorption filters with sorption material from bentonite of the specified modification and acid-salt activation.
The status of the photosynthetic pigments in the aquatic plants Lemna minor L. and Elodea canadensis Michx. under the action of Ni2+, Co2+, Cu2+ and Pb2+ acetate in concentrations 5.00, 2.50, 1.25, 0.62, 0.31, 0.15, 0.07, and 0.03 mg/L was assessed by changes in the fluorescence intensity of chlorophyll a and b and their ratio. It was established that nickel acetate in original solutions in all the above concentrations caused an increase in the fluorescence intensity of chlorophylls a and b in L. minor in relation to the control while the lead salt suppressed it. Co2+ acetate inhibits the fluorescence of chlorophyll a with concentrations in the initial solutions of 0.03 to 0.15 and 2.50 mg/L and that of chlorophyll b at all concentrations, except 0.62, 1.25 and 2.50 mg/L. For E. canadensis it was found that the salts of all metals at all concentrations caused a reduction of the fluorescence intensity of chlorophyll a relative to the control and increased it in the case of chlorophyll b. The exception is the effect of copper and lead acetates with a concentration of 1.25 mg/L, when the fluorescence intensity of chlorophyll b is maintained at the control level. The presence of Ni2+, Co2+, Cu2+, and Pb2+ acetates in all concentrations in the culture medium influences the quantitative and qualitative characteristics of chlorophyll a and b, which indicates a violation of the photosynthesis process. Our data on the change in the chlorophyll a / b ratio leads to a conclusion about degradation of chlorophyll a relative to chlorophyll b after the effect of heavy metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.