Structural and magnetic properties as well as the electronic structures of [Formula: see text] Heusler alloys were investigated in the framework of first principle calculation. Using the full-potential linearized augmented plane wave (FP-LAPW) in connection with the generalized gradient approximation (GGA) treatment of exchange-correlation energy, we have performed the structural optimization in the non-magnetic (NM) and three different magnetic configurations: FM, AFM-I and AFM-II. We have found that our two compounds are stable for the AFM-II state, which agree with the available experimental and theoretical results. The exchange constants [Formula: see text] and [Formula: see text] as well as the temperature of transition to the paramagnetic state [Formula: see text] were estimated here by the use of the energy difference method and the mean field approximation. The electronic structure of our compounds in their magnetic state was also studied. The GGA [Formula: see text]+ [Formula: see text]U method has also been used to take into account the strong correlations among the d orbitals of [Formula: see text] and [Formula: see text] atoms. This has considerably improved both the electronic and magnetic results which became close to the corresponding experimental data. We have finally studied the thermodynamic properties using the quasi-harmonic Debye model as implemented in the Gibbs Program.
In this paper, we present ab initio calculations within density functional theory (DFT) to investigate structure, electronic and magnetic properties of Ru 2 CrZ ( Z = Si , Ge and Sn ) full-Heusler alloys. We have used the developed full-potential linearized muffin tin orbitals (FP-LMTO) based on the local spin density approximation (LSDA) with the PLane Wave expansion (PLW). In particular, we found that these Ruthenium-based Heusler alloys have the antiferromagnetic (AFM) type II as ground state. Then, we studied and discussed the magnetic properties belonging to our different magnetic structures: AFM type II, AFM type I and ferromagnetic (FM) phase. We also found that Ru 2 CrSi and Ru 2 CrGe exhibit a semiconducting behavior whereas Ru 2 CrSn has a semimetallic-like behavior as it is experimentally found. We made an estimation of Néel temperatures (T N ) in the framework of the mean-field theory and used the energy differences approach to deduce the relevant short-range nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. The calculated T N are somewhat overestimated to the available experimental ones.
Abstract. We report structural and magnetic properties as well as band structures and density of states (DOS) of full Heusler Ru2CrSi, Ru2CrGe and Ru2CrSn. This was performed in the frame work of self-consistent first-principle calculations, using the Full-Potential Linearized Muffin Tin Orbital (FP-LMTO) method based on the Generalized Gradient Approximation (GGA), to investigate the structure and magnetic properties through the calculation of the electronic structure, equilibrium lattice constant and magnetic properties. Our results will show that our three Full-Heusler compounds are antiferromagnets.
Abstract. The electronic structure of the antiferomagnetic full Heusler alloys Ru 2 CrZ (Ge, Sn, Si) have been studied by first principal calculations using Full-Potential linearized Muffin Tin Orbital (FP-LMTO) method based on the generalized Gradient Approximation (GGA). It was shown that obtained equilibrium lattice parameters agree well with available experimental data. The influence of Z-elements on the electronic structure and magnetic properties of these compounds is analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.