Aims: A prospective study was performed to characterize the main human enteric viruses able to persist in sewage samples and in shellfish tissues, and to establish the correlation between environmental strains and viral infantile diarrhoea observed in the same area during the same period.
Methods and Results: A total of 250 sewage (raw and treated) and 60 shellfish samples were collected between January 2003 and April 2007 in Monastir region, Tunisia. Group A rotavirus (RVA) was detected in 80 (32%) sewage samples, norovirus (NoV) in 11 (4·4%) and enteric adenovirus (AdV) in 1 (0·4%). Among 60 shellfish samples collected near sewage effluents, one was contaminated by NoV (1·6%).
Conclusion: Our data represent the first documentation in Tunisia, combining gastroenteritis viruses circulating in the environment and in clinical isolates. We observed a correlation between environmental strains and those found in children suffering from gastroenteritis during the same period study. This suggests the existence of a relationship between water contamination and paediatric diarrhoea.
Significance and Impact of the Study: Our results address the potential health risks associated with transmission of human enteric viruses through water‐related environmental routes. The research findings will aid in elucidating the molecular epidemiology and circulation of enteric viruses in Tunisia and in Africa, where data are rare.
The aims of our investigations were (1) to look for Aichi virus in environmental samples and (2) to compare the Aichi virus strains in both clinical and environmental samples in order to evaluate the role of environmental contamination as a possible vehicle for viral transmission. Aichi virus was detected in 15 (6%) sewage samples and in 4 (6.6%) shellfish samples. Aichi virus was identified for the first time in water samples. Phylogenetic analysis revealed several clusters that occurred sequentially in time, suggesting some parallelism in the evolution of environmental and human strains. Aichi virus present in sewage reflects the viruses circulating in the community.
This study investigated the prevalence of sapovirus infections in children with acute gastroenteritis in Monastir region, Tunisia, from January 2003 to April 2007. Sapovirus was characterized by sequence and phylogenetic analyses of the partial polymerase gene. From 788 fecal specimens tested, 6 (0.8%) were positive for sapovirus, of these, 4 (66.7%) were monoinfections. All sapovirus positive samples were detected in outpatient, contrary to norovirus which was significantly more frequent in hospitalized children than in outpatients (14.5 vs. 9.5%, P = 0.03). The mean age of children with sapovirus infections was 11 ± 5.56 months (range 6-19 months). Sapovirus isolates were detected in March and between September and December 2003. Fever, vomiting, abdominal pain, and dehydration were not observed in patients with sapovirus infections. Analysis of nucleotide and amino acid sequences revealed that all 6 Tunisian sapovirus strains clustered in the GGI/1 genotype and strains were identical in the region sequenced, sharing 90.2% nucleotide identity with the reference strain Sapporo/82/JP (U65427). This represents the first finding of sapovirus infections in North Africa and especially in Tunisia. The data indicate that, contrary to norovirus which can cause severe diarrhea and is an important etiologic agent in hospitalized cases, sapovirus causes mild gastroenteritis in Tunisian children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.