a b s t r a c tA review of our investigations on single crystals of LnFeAsO 1Àx F x (Ln = La, Pr, Nd, Sm, Gd) and Ba 1Àx -Rb x Fe 2 As 2 is presented. A high-pressure technique has been applied for the growth of LnFeAsO 1Àx F x crystals, while Ba 1Àx Rb x Fe 2 As 2 crystals were grown using a quartz ampoule method. Single crystals were used for electrical transport, structure, magnetic torque and spectroscopic studies. Investigations of the crystal structure confirmed high structural perfection and show incomplete occupation of the (O, F) position in superconducting LnFeAsO 1Àx F x crystals. Resistivity measurements on LnFeAsO 1Àx F x crystals show a significant broadening of the transition in high magnetic fields, whereas the resistive transition in Ba 1Àx Rb x Fe 2 As 2 simply shifts to lower temperature. The critical current density for both compounds is relatively high and exceeds 2 Â 10 9 A/m 2 at 15 K in 7 T. The anisotropy of magnetic penetration depth, measured on LnFeAsO 1Àx F x crystals by torque magnetometry is temperature dependent and apparently larger than the anisotropy of the upper critical field. Ba 1Àx Rb x Fe 2 As 2 crystals are electronically significantly less anisotropic. Point-Contact Andreev-Reflection spectroscopy indicates the existence of two energy gaps in LnFeAsO 1Àx F x . Scanning Tunneling Spectroscopy reveals in addition to a superconducting gap, also some feature at high energy ($20 meV).
Single crystals of SmFeAsO1−xFy of a size up to 120 × 100 µm2 have been grown from NaCl/KCl flux at a pressure of 30 kbar and temperature of 1350-1450 °C using the cubic anvil high-pressure technique. The superconducting transition temperature of the obtained single crystals varies between 45 and 53 K. Obtained crystals are characterized by a full diamagnetic response in low magnetic fields and by a high critical current density in high magnetic fields. Structural refinement has been performed on the single crystal. Differential thermal analysis investigations at 1 bar Ar pressure show decomposition of SmFeAsO1−xFy at 1302 °C.Abstract. Single crystals of SmFeAsO 1-x F y of a size up to 120x100 μm 2 have been grown from NaCl/KCl flux at pressure of 30 kbar and temperature of 1350-1450 °C using cubic anvil high-pressure technique. Superconducting transition temperature of the obtained single crystals varies between 45 and 53 K. Obtained crystals are characterized by full diamagnetic response in low magnetic field and by high critical current density in high magnetic field. Structure refinement has been performed on single crystal. Differential thermal analysis investigations at 1 bar Ar pressure show decomposition of SmFeAsO 1-x F y at 1302 °C.
The in-plane magnetic penetration depth ab of the iron selenide superconductor with the nominal composition FeSe 0.85 was studied by means of muon-spin rotation. The measurements of ab −2 ͑T͒ are inconsistent with a simple isotropic s-wave type of the order parameter but are rather in favor of two-gap ͑s + s͒ and anisotropic s-wave order parameter symmetries, thus implying that the superconducting energy gap in FeSe 0.85 contains no nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.