In this paper, a chip-scale compact optical curvature sensor was demonstrated. It consists of a low threshold InGaAsP microdisk laser on a flexible polydimethylsiloxane polymer substrate. The curvature dependence of lasing wavelength was characterized by bending the cavity at different bending radii. The measurements showed that the lasing wavelength decreases monotonously with an increasing bending curvature. A good agreement between experiment and three-dimensional finite-difference time-domain simulation was also obtained. The sensitivity of the compact device to the bending curvature is -23.7 nm/mm form the experiment.
A plasmonic infrared (IR) filter assisted by localized surface plasmon polaritons (LSPPs) in a Ag/SiO₂/Ag T-shaped array was theoretically and experimentally investigated. By using a Fourier transform infrared (FTIR) spectrometer, an angle-independent LSPP resonant mode caused by a Fabry-Pérot resonance in the structure was observed in agreement with the prediction from the rigorous coupled-wave analysis (RCWA) simulation. The resonant wavelength of the mode can also be controlled by modifying the geometry of the T-shaped structure. Such LSPP property can be used as an IR reflection-type band-stop filter with a single spectral bandwidth and an ultrahigh immunity to incident angles.
Compact microdisk cavities were fabricated on a polydimethylsiloxane substrate. The lasing of the flexible compact cavity was achieved with a low threshold power. The whispering-gallery mode of the microdisk was also characterized with three-dimensional finite-difference time-domain simulation. The curvature dependence in output power and threshold was also demonstrated by bending the microdisk cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.