The effects of cluster correlations have been studied in the 12 C + 12 C reaction at 50 MeV/nucleon, using three AMD models, the AMD (AMD/D) without any additional cluster correlations, AMD/D-COALS with nucleon correlations based on a coalescence prescription for light cluster formations with A ≤ 4 and AMD-Cluster with an extended cluster correlation in two-nucleon collision processes and a special treatment for intermediate fragment formation with A ≤ 9. The angular distributions and energy spectra of fragments have been simulated and compared with the available experimental data. It is found that the cluster correlations take a crucial role to describe the productions of light charged particles (LCPs) and intermediate mass fragments (IMFs), and the AMD-cluster studied here provides a consistent overall reproduction of the experimental data.It is also shown that the significant effects of the secondary decay processes are involved for the fragment production besides the dynamical productions in the AMD stage. Detailed LCP and IMF production mechanisms involved in the intermediate energy heavy ion collisions are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.