Summary Methylation has been shown to play an important role in the down-regulation of oestrogen receptors (ER) in breast cancer cells. One critical question that remains unclear is whether methylation can account for the loss of ER expression in cells derived from an ERpositive cell line. This laboratory has established an in vitro cell system using long-term growth of human ER-positive breast cancer cell line T47D in oestrogen-free medium. A clonal cell line, T47D:C4:2 (C4:2), has been characterized. Unlike T47D:A18 (A18), which is a T47D line maintained in oestrogen medium, C4:2 has lost the expression of ER and hormone responsiveness. DNA fingerprinting and restriction fragment length polymorphism (RFLP) analysis results confirmed that C4:2 was of the same lineage as A18. These cell lines provide an invaluable system to study the mechanism of ER expression and regulatory pathways leading to hormone-independent growth. The results here clearly demonstrate that the ER CpG island in C4:2 cells remains unmethylated. The loss of ER in the cell line must be due to mechanisms other than methylation. We also evaluated the ER CpG island in the MDA-MB-231 :10A (10A) cell line, which is a clone from the MDA-MB-231 line obtained from ATCC and the DNA from the MDA-MB-231 cell line used in the original report. Unlike the cell line from the report, which showed a full methylation pattern in the island, the 1 OA line only showed a partial methylation pattern in the CpG island. Possible mechanisms pertaining to the heterogeneous methylation pattern of the ER CpG island in the breast cancer cells are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.