Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 × 10−5 nm/psi at 1480 nm to 1.3 × 10−3 nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from −3.4 × 10−6 1/psi to −1.3 × 10−6 1/psi and from −5 × 10−6 1/psi to −1.8 × 10−6 1/psi, respectively, which were in a good accordance with each other.
ABSRTACTIn this paper, a new type of dynamic chemical etching is used to fabricate different fiber tips with different cone angles. It was done by controlling surface level of hydrofluoric acid relative to the fiber, with changing volume of the acid in the container using a syringe pump. Using this method the cone angle of the tip is effectively controlled and angles between 1 o and 30 o was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.