A b s t r a c t T h e n i n e -b a n d e d a r m a d i l l o , D a s y p u s novemcinctus, is a member of the family Dasypodidae, which contains all extant species of armadillos and represents the most diverse group of xenarthran mammals by their speciation, form, and range of scratch-digging ability. This study aims to identify muscle traits that reflect specialization for fossorial habit by observing forelimb structure in D. novemcinctus and comparing it among armadillos using available myological data. A number of informative traits were observed in D. novemcinctus and among Dasypodidae, including the absence of m. rhomboideus profundus, the variable presence of a m. articularis humeri and m. coracobrachialis, two heads of m. triceps brachii with scapular origin, and a lack of muscle mass devoted to antebrachial supination. Muscle mass and myosin heavy chain (MHC) isoform content were also quantified from our forelimb dissections. New osteological indices are additionally calculated and reported for D. novemcinctus. Collectively, the findings emphasize muscle mass and power output for limb retraction and specialization of the distal limb for sustained purchase of soil by strong pronation and carpal/digital flexion. Moreover, the myological traits assessed here provide a valuable resource for interpretation of muscle architecture specializations among digging mammals and future reassessment of armadillo phylogeny.
Due to small body size, an immature musculoskeletal system, and other growth-related limits on performance, juvenile mammals frequently experience a greater risk of predation than their adult counterparts. As a result, behaviorally precocious juveniles are hypothesized to exhibit musculoskeletal advantages that permit them to accelerate rapidly and evade predation. This hypothesis was tested through detailed quantitative evaluation of muscle growth in wild Eastern cottontail rabbits (Sylvilagus floridanus). Cottontail rabbits experience high rates of mortality during the first year of life, suggesting that selection might act to improve performance in growing juveniles. Therefore, it was predicted that muscle properties associated with force and power capacity should be enhanced in juvenile rabbits to facilitate enhanced locomotor performance. We quantified muscle architecture from 24 paravertebral and hindlimb muscles across ontogeny in a sample of n = 29 rabbits and evaluated the body mass scaling of muscle mass (MM), physiological cross-sectional area (PCSA), isometric force (F max ), and instantaneous power (P inst ), along with several dimensionless architectural indices. In contrast to our hypothesis, MM and PCSA for most muscles change with positive allometry during growth by scaling at M 1:3 b and M 1:1 b , respectively, whereas F max and P inst generally scale indistinguishably from isometry, as do the architectural indices tested. However, scaling patterns indicate that the digital flexors and ankle extensors of juvenile S. floridanus have greater capacities for force and power, respectively, than those in adults, suggesting these muscle properties may be a part of several compensatory features that promote enhanced acceleration performance in young rabbits. Overall, our study implies that body size constraints place larger, more mature rabbits at a disadvantage during acceleration, and that adults must develop hypertrophied muscles in order to maintain mechanical similarity in force and power capacities across development. These findings challenge the accepted understanding that juvenile animals are at a performance detriment relative to adults. Instead, for prey-predator interactions necessitating short intervals of high force and power generation relative to body mass, as demonstrated by rapid acceleration of cottontail rabbits fleeing predators, it may be the adults that struggle to keep pace with juveniles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.