The peculiarities and the basic technological ways of forming thin layers of semiconductor materials in vacuum by the method of thermal sputtering in quasi-closed volume are analyzed. The disadvantages of thermal deposition of thin films in open vacuum for multicomponent semiconductor compounds are indicated. We present designs of special collapsible evaporation chambers for quasi-closed volume thermal vacuum deposition, which contain the source material and the substrate in quasi-insulated conditions, and allow to create and control the necessary temperature ratios between the evaporator, substrate, walls and other structural elements. It is shown that the spatial distribution of temperature in the mentioned above chambers provides the evaporation (sublimation) of the starting material, the reflection of vapors from the heated walls, the intense exchange interaction between the gas phase and the condensation surfaces, which contributes to the diffusion mechanism of the transfer of matter and thermodynamically balanced process of film growth. It is shown that for all modifications the conditions of isolation of the localized volume and equilibrium of the condensation process are fulfilled to a greater or lesser extent by creating the required temperature gradient. However, it is problematic to use such designs for mass production because of their complexity and technological features. That is why, the method of thermal deposition of thin films in a quasi-closed volume is most often used in the manufacture of epitaxial single crystalline layers for research and experimental development, and for industrial production it is very effective to develop methods for obtaining thin films that combine on the one side universality of open vacuum, and on the other allow to approximate the processes of evaporation (sublimation) – condensation to thermodynamic equilibrium, for example, different variants of “hot walls”. It is stated that the analyzed methods or their modifications are today a necessary means of creating thin-film semiconductor structures with predetermined properties. It is stated that the analyzed methods or their modifications are today a necessary means of creating thin-film semiconductor structures with predetermined properties.
Issues of improving the properties of semiconductor thin film and their reproducibility, as well as improving and reducing the cost of manufacturing technology stimulate research and development of new, advanced methods. Therefore, it is important to optimize the technology of getting reproducible, competitive, high-tech thin films of multicomponent semiconductor compounds with predetermined properties. In the given article it is shown that constructive and technological improvements of a method of thermal spraying in vacuum allow to minimize nonequilibrium conditions of film growth, keeping the advantages of thermovacuum spraying, such as high reproducibility, processability and productivity, a wide range of variations in the synthesis conditions, and, accordingly, the properties of condensates, maximum purity of growth processes, as well as ease of performing and management and cost-effectiveness of the process of getting perfect condensates. For this purpose, we have developed a special construction of a quasi-fusion evaporator and a device for getting semiconductor film in vacuum, as well as a version of a transparent “hot wall”. The resistivity, cross section and geometric dimensions of the cover and the heater of the developed structures were selected so that in the mode of resistive heating of the evaporator temperature gradient due to the difference in their electrical resistance, and, accordingly, the Joule heat of current, in the temperature range 673… 1473 K provided the temperature of the cover 1.1 ... 1.3 times higher than the temperature of the heater. Due to the elevated temperature of the cover, the solid fraction is either repelled on the sublimating (evaporating) surface and the walls of the crucible, or undergoes sublimation (evaporation) from the surface of the cover. Depending on the values of the sputtering rate, the grain size of semiconductor polycrystalline film varied from units of nanometers to several micrometers. Crystallinely ordered films were got at relatively low values of the sputtering rate (0.5...5 nm·s-1). It was set up the technological conditions for getting thin films of multicomponent semiconductors, which ensure the independence of the chemical composition of condensates from the evaporation rate in the wide range from 0.05 to 20 nm·s-1, uniform composition of the gas phase during sublimation, absence of inhomogeneous solids in films, wide range properties of condensates and their high reproducibility.
Features and main technological methods of forming thin layers of semiconductor materials by methods of chemical deposition and mechanical application are analyzed. The disadvantages of thermal sputtering and cathodic sputtering of thin films in vacuum for multicomponent semiconductor compounds are indicated. Features of chemical deposition of semiconductor films from the gas (steam) phase are presented. Such deposition involves the transfer of source material from the evaporator zone with higher temperature in the form of volatile compounds to the colder surface of the substrate, where the film growth occurs as a result of reaction of transported compounds or their decomposition. It is shown that the growth of the film during chemical vapor deposition is a process of layer-by-layer condensation of atoms or molecules, with the advantageous difference that during chemical deposition the latter are formed as a result of a heterogeneous chemical reaction when there is no need for average free path length of the gas molecules to be larger than the size of the deposition chamber, i.e. no need for critical degree of vacuum. Chemical deposition of thin films from solution is characterized as a process of precipitation of solute which occurs due to the fact that the ionic product exceeds the product of solubility, i.e. it is greater than the constant value characteristic of a saturated solution in the equilibrium state. We emphasize, that chemical deposition from an water solution allows to obtain homogeneous in thickness and structure fine-grained non-textured mechanically stable polycrystalline films with good adhesion to substrates and the required set of properties. The method of pulverization with subsequent pyrolysis is described. This is deposition from intracomplex organometallic compounds, which is based on thermally stimulated reactions between clusters of atoms, chemically active substances of liquid or vapor phase. The method of electrolytic deposition on electrically conductive substrates is characterized. The method is using appropriate salt solutions by co-deposition of individual components, or by deposition on the cathode of one of the components with its subsequent interaction with others present in the solution. We also describe the method of obtaining epitaxial thin films of semiconductor deposition materials. We note that the analyzed methods or their modifications are necessary tool today to create thin-film semiconductor structures with predetermined properties. In the same time, in each particular case the features of each method of obtaining thin semiconductor films should be comprehensively evaluated and, depending on the chemical composition, structure, topology and complex of expected properties, the most effective method should be applied.
The review and analysis of the basic technological methods of formation of thin layers of semiconductor materials is presented. The timeframe for the occurrence of thin film technologies and the main centers of their localization are specified. It is shown that nowadays structure, properties and basic methods of obtaining thin films sufficiently well studied for not only simple but also complex, multi-component inorganic semiconductor materials, new areas of application and increase of requirements to the operational characteristics of devices on their basis require improvement of existing technologies and development of new methods for their synthesis, which involves a detailed analysis of the known, and the search for new, progressive methods of preparation. Due to the fact that the main methods for obtaining thin films of inorganic semiconductor materials are vacuum condensation and chemical precipitation, the first part of the review describes the methods of their vacuum application, in particular, thermal spraying in an open vacuum. It is shown that the most common way of obtaining thin films is the thermal spraying under resistive heating of the evaporator with the source material.We analyze the special structural and technological changes and improvement of traditional methods and systems of thermal spraying, which allow to equalize the ratio of the chemical composition of thin films and the source material, improve the stoichiometry of condensates, and ensure their homogeneity.The designs of thermal evaporators with resistive heating of crucibles in an open vacuum with sublimation or evaporation of one and two substances are presented. It is shown how these types of evaporators exclude the transfer of solid particles into evaporating or sublimation into the vapor phase and eliminate direct vapor deposition on the condensation surface, which more or less protects against heterogeneous condensate inclusions.It is shown that the methods analyzed or their modifications are nowadays the necessary means for the creation of thin-film semiconductor structures with predetermined properties, while vacuum deposition, in particular, traditional and modified thermal spraying in a vacuum due to its simplicity(but at the same time its ability to effectively control a large the number of technological factors and create the necessary conditions for the growth of condensates) remains one of the most common ways of obtaining thin films, including inorganic semiconductors.
In recent decades, thin films of organic semiconductors (OS), or, as they are also called, organic molecular crystals, have attracted special attention in connection with a number of proposals for their use in functional units of modern electronics, and therefore in modern technological equipment. At the same time, the optical, electrophysical and photoelectric properties of OS are very important, which are determined both by the structure of organic molecules, that is, the starting material, and by the crystal structure of condensates, that is, by the technological conditions of film production. In this regard, this article presents the results of studies of some properties of OS and the technology of obtaining thin films based on them. OS are characterized by weak intermolecular bonds of the Van der Baals type, which causes the low energy of their crystal lattice. In this regard, the electronic structure of individual molecules during the formation of a crystal does not change significantly, and the properties of the crystals almost completely preserve the individual features of the molecules in combination with new properties caused by their collective interaction. This determines the main features of optical and electrophysical properties of OS, their energy structure of neutral and ionized states. In this article, it is experimentally confirmed that the planar structure of atoms of molecular crystals, in particular, linear acenes, and therefore the number of π-electrons responsible for exciton absorption in the visible region of the spectrum determines the position of the edge of their own optical absorption. It was also confirmed that the long-wavelength shift of the optical absorption edge of thin films of phthalocyanines is observed when atoms of heavy elements, for example, lead, are introduced into the molecule. When atoms of lighter elements are introduced into the phthalocyanine molecule, their planarity is not disturbed, and the long-wavelength shift of the edge is much smaller. An explanation of such changes is presented based on the interaction of foreign atoms with the π-electron system of phthalocyanine rings of neighboring molecules. The significant influence of the technological parameters of production, in particular the temperature of the substrate during thermal sputtering, on the crystal structure and optical properties of thin films of linear polyacenes and metallophthalocyanines has been demonstrated and substantiated. The possibility of controlling and presetting the necessary properties of thin-film condensates of molecular crystals is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.