Twenty eight moderately water-soluble to insoluble chromium (VI) compounds, such as zinc and lead chromate, industrial and laboratory synthesized pigments, and the analytical reagents strontium, barium and calcium chromate, were physicochemically characterized and studied for cytotoxicity and morphological transformation in cultured Syrian hamster embryo (SHE) cells. In vivo validation of malignancy of transformed SHE cells was performed. A high physicochemical diversity among the complex chromium pigments was revealed. The solubility of the compounds was greatly increased after incubation in a complete medium and even higher under cell culture conditions. The cytotoxic effects appeared to be due principally to extracellular solubilized chromium because the most solubilized compounds. Zn, Ca and Sr chromates, were equitoxic at about the same Cr concentration treatment and 8-fold more cytotoxic than less soluble compounds such as some Pb chromates and Ba chromate. However, certain physicochemical properties of lead chromate pigments could also influence their cytotoxic activity. All test compounds were, in a dose-dependent manner, efficient in inducing morphological transformation of SHE cells. Many of the Cr pigments, although physicochemically different, were similarly effective in transformation induction. Nevertheless, compounds among Zn and Pb chromates had various transforming potencies. Ba chromate was the least active in inducing transformation. Certain physicochemical properties could mediate the transforming activity but no particular relationship could be established between any one of the physicochemical parameters and the transforming potency. Cloned morphologically-transformed colonies of SHE cells were grown in soft agar medium and showed true neoplastic behaviour by tumour formation in syngeneic animals. These results show that various chromate pigments containing either Zn or Pb, of medium to very low aqueous solubility, induced neoplastic transformation of SHE cells.
In order to evaluate the effect of thermal treatments on the surface reactivity and carcinogenic potential of diatomaceous earth (DE) products, the physicochemical features of some specimens--derived by heating the same original material--were compared with their cytotoxic and transforming potency. The samples were an untreated DE (amorphous) progressively heated in the laboratory at 900 degrees C (DE 900) and 1200 degrees C (DE 1200) and a commercial product manufactured from the same DE (Chd) from which the finer fraction (< 10-microm diameter) was separated (Chd-F). Quartz (Min-U-Sil 5) and a vitreous silica (amorphous) smoothed up with hydrofluoric acid and were used as positive and negative controls, respectively. All samples were analyzed for their degree of crystallization, for their ability to release free radicals and reactive oxygen species, and for their cytotoxic and transforming potencies in Syrian hamster embryo (SHE) cells. X-ray diffractometry showed that DE 900, like DE, was still amorphous, whereas DE 1200 as well as the commercial product (Chd) were partially crystallized into cristobalite. The ability of the dust to release hydroxyl (*OH) radicals in the presence of hydrogen peroxide, as revealed by the spin-trapping technique, was as follows: Chd-F, DE 1200 > Chd > DE 900 > DE, suggesting that on heating, the surface acquires a higher potential for free radical release. Most of the silica samples generated COO* radicals from the formate ion, following homolytic rupture of the carbon-hydrogen bond, in the presence of ascorbic acid. A concentration-dependent decrease in cell proliferation and colony-forming efficiency was observed in SHE cultures treated with Chd-F, Chd, and DE. Heating abolished DE cytotoxicity but conferred a transforming ability to thermal treated particles. DE was the only sample that did not induce morphological transformation of cells. According to their transformation capacity, the samples were classified as follows: Chd-F > Chd, DE 1200 > DE 900 >> DE. Taken together, the reported results suggest that (1) the transforming potential of a biogenic amorphous silica is related to the thermal treatment that transforms the original structure in cristobalite and generates surface active sites; (2) the reactivity of samples in releasing *OH radicals correlates to their transforming ability; (3) the finer fraction of the commercial product is significantly more toxic and transforming than the coarse dust; and (4) opposite to silica dusts of mineral origin, which loose both cytotoxicity and transforming ability upon heating, heated diatomite acquires a cell-transforming potency. DE products should be thus considered a set apart of silica-based potentially toxic materials.
Chromium(VI) compounds--Ca, Sr, Zn and Pb chromates--were studied for cytotoxicity and morphological transformation in Syrian hamster embryo (SHE) cells in relation to their solubilization in cell culture conditions and intracellular Cr concentration. Ca, Sr and Zn chromates were completely solubilized after 1 day of incubation in cell cultures; for Pb chromate, 20-36% Cr was solubilized only after 7 days. In two parallel transformation assays, the SHE cells were treated with suspensions or with corresponding supernatants (containing only solubilized Cr) of these compounds. A statistically significant relationship was observed between the Cr treatment concentration and the amount of Cr per cell, irrespective of the compound (except suspensions of Pb chromate). The cytotoxicity was due to extracellular solubilized chromium because treatments with either supernatants or suspensions of Ca, Sr and Zn chromates gave the same LC50 of 0.31 +/- 0.01 microgram Cr/ml. A clear dose-response relationship was observed for the induction of morphological transformation for each compound, either previously solubilized or in suspension. The expression of the transformation frequencies as a function of the Cr concentration/cell revealed that (i) the transformation frequency is dependent on the Cr concentration/cell irrespective of the Cr compound Ca, Sr or Zn chromate, (ii) the transformation frequency induced by solubilized Pb chromate is higher than that induced by the other compounds at the same concentration of Cr/cell. A double treatment with solutions of Cr and Pb at corresponding concentrations induced the same transformation frequency as the solubilized Pb chromate. The results show that the solubilization of particulate Cr(VI) compounds is a critical step for their cytotoxic and transforming activities; the intracellular soluble Cr is the sole causative agent of the transforming activity of Ca, Sr and Zn chromates, while Pb appears to act synergistically with Cr in inducing the transformation by Pb chromate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.