A new formula is derived which gives electron mobility values in argon in good agreement with experiment and calculation. The effect of mercury on electron mobility in argon is expressed as a correction factor. The theoretical expression obtained is applied to discharge conditions for which exact results are known, and the results are compared. The values of mu e obtained have been used to calculate axial electron density, showing good agreement with experiment.
We report a series of experiments designed to determine if agents and conditions that have been reported to alter sodium reabsorption, Na-K-ATPase activity or cellular structure in the rat distal nephron might also regulate the density or affinity of binding of 3H-metolazone to the putative thiazide receptor in the distal nephron. Experimental conditions selected for study were acute (60-min) and chronic hydrochlorothiazide (HCTZ), acute acetazolamide, acute and chronic furosemide, and 14 days of varied intake of dietary sodium. The density of the binding of 3H-metolazone was increased 47% by acute HCTZ (P less than 0.001) and 39% (P less than 0.001) by acute furosemide. In contrast, acute acetazolamide produced no change in binding despite eliciting a dramatic diuresis. Chronic HCTZ (5 days) and chronic furosemide (7 days) increased binding of 3H-metolazone by 46% (P less than 0.001) and by 101% (P less than 0.001), respectively. Variation of dietary sodium intake over a range that allowed normal growth of the animal and that produced urinary excretion of Na varying from 0.28 to 2.62 mEq/100 g/day failed to alter the density of binding of 3H-metolazone. These studies are the first indication that the density of the thiazide receptor is regulated by a variety of both acute and chronic conditions that have previously been associated with changes in transport, ultrastructure or Na-K-ATPase activity in the distal nephron.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.