The aging population has drastically increased in the past two decades, stimulating the development of devices for healthcare and medical purposes. As one of the leading potential risks, the injuries caused by accidental falls at home are hazardous to the health (and even lifespan) of elderly people. In this paper, an improved YOLOv5s algorithm is proposed, aiming to improve the efficiency and accuracy of lightweight fall detection via the following modifications that elevate its accuracy and speed: first, a k-means++ clustering algorithm was applied to increase the accuracy of the anchor boxes; the backbone network was replaced with a lightweight ShuffleNetV2 network to embed simplified devices with limited computing ability; an SE attention mechanism module was added to the last layer of the backbone to improve the feature extraction capability; the GIOU loss function was replaced by a SIOU loss function to increase the accuracy of detection and the training speed. The results of testing show that the mAP of the improved algorithm was improved by 3.5%, the model size was reduced by 75%, and the time consumed for computation was reduced by 79.4% compared with the conventional YOLOv5s. The algorithm proposed in this paper has higher detection accuracy and detection speed. It is suitable for deployment in embedded devices with limited performance and with lower cost.
With the development of automation technologies, autonomous robots are increasingly used in many important applications. However, precise self-navigation and accurate path planning remain a significant challenge, particularly for the robots operating in complex circumstances such as city centers. In this paper, a nonholonomically constrained robot with high-precision navigation and path planning capability was designed based on the Robot Operating System (ROS), and an improved hybrid A* algorithm was developed to increase the processing efficiency and accuracy of the global path planning and navigation of the robot. The performance and effectiveness of the algorithm were evaluated by using randomly constructed maps in MATLAB and validated in a practical circumstance. Local path planning and obstacle avoidance were carried out based on the model predictive control (MPC) theory. Compared with the conventional A* + DWA (dynamic window approach) method, the average searching time was reduced by 12.62~24.5%, and the average search length was reduced by 9.25~9.5%. In practical navigating tests, the average search time was reduced by 18~24%, and the average search length was reduced by 10.3~12%, while the overall path was smoother. The results demonstrate that the improved algorithm can enable precise and efficient navigation and path planning of the robot in complex circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.