Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural product occurring in grapes and various other plants with medicinal properties associated with reduced cardiovascular disease and reduced cancer risk. To evaluate the possibility and potential mechanism(s) of which resveratrol inhibits N-nitrosomethylbenzylamine (NMBA)-induced rat esophageal tumorigenesis, 96 F344 male rats were divided into 10 groups and resveratrol (1 and 2 mg/kg) was administered orally or intraperitoneally (i.p.). In the groups in which resveratrol was administered at 2 mg/kg (orally, for 16 weeks), 1 and 2 mg/kg (i.p., for 16 weeks) and 1 mg/kg (i.p., for 20 weeks), the number of NMBA-induced esophageal tumors per rat was significantly reduced to 78, 62, 54 and 48, respectively (P < 0.05), and the size of maximum tumors in each group with resveratrol treatment was also significantly smaller than that in NMBA alone group (P < 0.05). Although the pathological examination did not indicate significantly decreased incidence of carcinomas by administering resveratrol, the tendency of carcinogensis suppression was observed (P = 0.177). Semi-quantitative RT-PCR and ELISA analysis demonstrated that following NMBA treatment, the expression of COX-1 mRNA was strongly present in tumor tissues, while weakly present in non-tissues; the expression of COX-2 mRNA was induced in both tumor and non-tumor tissues. The production of prostaglandin E(2) (PGE(2)) increased approximately 6-fold, compared with the normal esophageal mucosa. The higher expression of COX-1, the up-regulated COX-2 expression and the increased levels of PGE(2) synthesis were all significantly decreased by administering resveratrol. Our study suggests that resveratrol suppressed NMBA-induced rat esophageal tumorigenesis by targeting COXs and PGE(2), and therefore may be a promising natural anti-carcinogenesis agent for the prevention and treatment of human esophageal cancer.
Using rf magnetron sputtering, we have grown low resistivity (∼3×10−4 Ω cm), high transparency (>80%) indium–tin–oxide thin films with near zero stress on polyester substrates, near room temperature. We concluded from analysis of sputtered ions and atoms that bombardment by energetic (>70 eV) negative oxygen ions caused high stress (∼1 GPa) in films grown at lower (6 mTorr) pressure. Sputtering at 12 mTorr dissipated energetic bombardment and reduced film stress to about zero, independent of oxygen partial pressure (pO2). However, increasing pO2 did affect film microstructure, that is, crystallinity, roughness, and grain size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.