BACKGROUND: In hospitals, some problems still exist, such as transfusion reaction that cannot be dealt with in time, medical staff cannot observe the physiological information of the infusion patients in real time, and the infusion speed cannot be controlled smartly. OBJECTIVE: To address these problems, we propose a method for intelligent monitoring and designed a controller for dripping speed regulation. METHODS: A photoelectric sensor was used to obtain the heart rate (HR) information, and a PID parameter self-tuning controller based on the fuzzy control principle was developed to establish a multi-stage adaptive control method based on HR feedback. By controlling the rotation of the motor to drive the cam to control the drip rate smartly. Also, the infusion and physiological information are transmitted to the nurse station to monitor the possible transfusion reaction. RESULTS: The experiments show that the intelligent infusion controller can achieve HR signal detection with an average accuracy of over 94%, dripping speed detection and adjustment with an average accuracy of above 98% and adjustment time within 35 seconds. CONCLUSION: Our study proved that the intelligent infusion controller can control the infusion process intelligently and effectively, and has excellent reliability, small steady-state error and high practical value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.