International audienceSilica-based hybrid materials doped with gold nanoparticles (AuNPs) of different shapes were prepared with an adapted sol–gel technology (using MTEOS) and polished to high optical quality. Both spherical (23 and 45 nm in diameter) and bipyramidal (36, 50 and 78 nm in length) AuNPs were prepared and used as dopants. The AuNPs were functionalized with a novel silicone polymer for compatibilization with the sol–gel medium. The glass materials showed well defined localized surface plasmon resonance (SPR) absorbance from the visible to NIR. No redshifts in the spectra, due to the increase in doping concentration, were observed in the glasses, proving that no or very small SPR coupling effects occur. Spectroscopic Muller Matrix Ellipsometry showed that the shorter bipyramidal AuNPs (36 and 50 nm in length) have a clear preferred orientation in the MTEOS matrix, i.e. a tendency to be oriented with their long axis in the plane parallel to the glass surfaces. Dispersions of AuNPs have proven to be good optical power limiters that depend on particle size and geometry. The solid-state glass materials showed good optical power limiting at 532 nm for nanosecond pulses, which did not depend on the size or geometry of the AuNPs. In contrast to the observation at 532 nm, at 600 nm no optical limiting effect was observed. In these solids, as for dispersions of AuNPs, the optical limiting response is caused by scattering
We report a spectroscopic Mueller matrix experimental study of a plasmonic photonic crystal consisting of gold hemispheroidal particles (lateral radius 54 nm, height 25 nm) arranged on a square lattice (lattice constant 210 nm) and supported by a glass substrate. Strong polarization coupling is observed for ultraviolet wavelengths and around the surface plasmon resonance for which the off-block-diagonal Mueller matrix elements show pronounced anisotropies. Due to the Rayleigh anomalies, the block-diagonal Mueller matrix elements produce a direct image of the Brillouin Zone (BZ) boundaries of the lattice and resonances are observed at the M-point in the first and at the X-point in the second BZ. These elements show also the dispersion of the localized surface plasmon resonance.
A subwavelength concentric ring metal grating for visible light (λ=632.8 nm) is designed and fabricated by electron-beam lithography to transform circularly polarized light into radially polarized light. Experimental results are compared to theoretical predictions and the advantages and disadvantages of the element with alternative methods are discussed.
We present the properties of Cr-doped zinc sulfide (ZnS:Cr) films deposited on Si(100) by pulsed laser deposition (PLD). The films are studied for solar cell application, and to have a high absorption a high Cr content (2.0-5.0 at.%) was intended. It is determined by energy-dispersive X-ray spectroscopy that Cr is relatively uniformely distributed, and Cr increase corresponds to Zn decrease.The results indicate that most Cr atoms substitute Zn sites. Consistently, electron energy loss and X-ray photoelectron spectroscopy (XPS) showed that the films contain mainly Cr increasing Cr content, and at a given Cr content, increases with increasing growth temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.