Known DNA sequences coding for the 16S rRNAs of 14 slowly growing Mycobacterium species were analyzed. Three sets of primers were synthesized: MAV and MIN, for M. avium and M. intracellulare, respectively, and MYCOB, for the slowly growing mycobacteria. Whole-cell DNAs of 14 reference species were extracted and amplified by PCR with the MYCOB, MAV, and MIN primers. The MYCOB primer amplified a 0.9-kb segment from the DNAs of all 14 species. The MAV and MIN primers each amplified one highly specific 1.3-kb segment from the homologous DNA, respectively. DNAs from each of 10 clinical isolates of M. avium and M. intracellulare identified by conventional methods were amplified with the MYCOB as well as the MAV and MIN primers; 9 of 10 isolates of each species were identified with their respective primers. One isolate of M. intracellulare was subsequently found to have been mislabeled. One isolate designated M. avium reacted only with the MYCOB primer. The hypervariable region of this strain was shown by DNA sequence analysis to be distinct from all known 16S rRNA sequences of Mycobacterium spp. Our data indicate that the currently identified M. avium-M. intracellulare complex includes strains genetically diverse from M. avium and M. intracellulare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.