There is increasing interest in the potential chronic beneficial effects of dietary n-3 PUFA on the metabolic syndrome (MetS) and associated cardiovascular complications. We have recently established that increased dietary n-3 PUFA has a profound acute benefit on fasting lipids and the postprandial pro-inflammatory response in the JCR:LA-cp rat, a model of the MetS. However, it is unclear to what extent chronic dietary n-3 PUFA intervention can modulate the progression of end-stage metabolic and vascular complications. The present study aimed to determine the chronic effects of dietary n-3 PUFA supplementation on fasting and non-fasting dyslipidaemia, insulin resistance and vascular complications in the JCR:LA-cp rodent model. JCR:LA-cp rats were fed an isoenergetic lipid-balanced diet supplemented with 5 % n-3 PUFA (w/w) of the total fat (fish oil-derived EPA/DHA) for 16 weeks. Fasting and non-fasting (postprandial) plasma lipid profile was assessed. Hepatic and adipose tissue was probed for the expression of lipogenic proteins (acyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and sterol regulatory element-binding protein-1 (SREBP-1)), while the activity of Jun N-terminal kinase (JNK) was assessed via Western blot to target phosphorylated JNK protein in primary enterocytes. The frequency of myocardial lesions was assessed by haematoxylin and eosin staining. Increased dietary n-3 PUFA improved both the fasting and postprandial lipid profiles (TAG, cholesterol and apoB48) in the JCR:LA-cp rat, potentially via the down-regulation of the hepatic or adipose tissue expression of lipogenic enzymes (ACC, FAS and SREBP-1). Rats fed the 5 % n-3 PUFA diet had lower (58·2 %; P,0·01) enterocytic phosphorylated JNK protein and secreted less cholesterol (30 %; P, 0·05) into mesenteric lymph compared with the control. The chronic metabolic benefits of dietary n-3 PUFA may underlie the potential to reduce vascular complications during the MetS, including the observed reduction in the frequency (approximately 80 %) of late-stage 3 myocardial lesions.
Acute dietary n-3 PUFA dietary supplementation can improve fasting as well as postprandial lipid metabolism and components of the associated inflammatory response in the JCR:LA-cp rat. Further, moderate dose n-3 PUFA supplementation may reduce corresponding body weight during conditions of hypercholesterolaemia and/or modulate inflammation associated with obesity and the metabolic syndrome.
The possible presence and action of growth hormone (GH) in the neural retina was investigated in newborn mice. The neural retina was found to be a site of GH gene expression, as GH mRNA was abundant in cells of the retinal ganglion cell layer, in which GH was also detected. It was also a site of GH action, since GH receptor (GHR) immunoreactivity mirrored that of GH. Actions of GH within the eye were indicated by a reduction in its axial length and retinal width (its neuroblastic, inner plexiform, and optic fiber layers) in GHR gene disrupted mice (GHR-/-), in comparison with wild type (GHR+/+) littermates. In the absence of GH signaling, four proteins in the retinal proteome of the GHR-/- mice (identified by 2-D gels and MS) differed in abundance with those in the wild type mice. Brain abundant membrane attached signal protein-1 (BASP-1) was down-regulated, whereas protein kinase C inhibitor 1, cyclophilin A, KH domain-containing, RNA-binding, signal transduction-associated protein 3 were up-regulated in GHR-/- mice. These proteins are involved in retinal vascularization, neural proliferation and neurite outgrowth. GH might thus have hitherto unsuspected roles in these processes during retinal development.
BackgroundLiterature supports the “response-to-retention” hypothesis—that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance.Methods and ResultsArteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls.ConclusionsIncreased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS.
A novel transcript of the GH gene has been identified in ocular tissues of chick embryos. It is, however, unknown whether this transcript (small chicken GH, scGH) is translated. This possibility was therefore assessed. The expression of scGH mRNA was confirmed by RT-PCR, using primers that amplified a 426-bp cDNA of its coding sequence. This cDNA was inserted into an expression plasmid to transfect HEK 293 cells, and its translation was shown by specific scGH immunoreactivity in extracts of these cells. This immunoreactivity was directed against the unique N terminus of scGH and was associated with a protein of 16 kDa, comparable with its predicted size. Most of the immunoreactivity detected was, however, associated with a 31-kDa moiety, suggesting scGH is normally dimerized. Neither protein was, however, present in media of the transfected HEK cells, consistent with scGH's lack of a signal sequence. Similar moieties of 16 and 31 kDa were also found in proteins extracted from ocular tissues (neural retina, pigmented epithelium, lens, cornea, choroid) of embryos, although they were not consistently present in vitreous humor. Specific scGH immunoreactivity was also detected in these tissues by immunocytochemistry but not in axons in the optic fiber layer or the optic nerve head, which were immunoreactive for full-length GH. In summary, we have established that scGH expression and translation occurs in ocular tissues of chick embryos, in which its localization in the neural retina and the optic nerve head is distinct from that of the full-length protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.