Abstract-In this letter, an overview of reported measurements and modeling of the ultra wide band (UWB) indoor wireless channel is presented. An introduction to UWB technology and UWB channels is provided. Different UWB channel sounding techniques are discussed and approaches for the modeling of the UWB channel are reviewed. The available indoor UWB channel measurement results are consulted and accordingly, the major UWB channel parameters are presented and compared to those of narrowband systems. The novelty of this work is the gathering of different UWB channel parameters, analysis, and comparison. Added with the influence of UWB antenna in channel-modeling as well as the frequency-dependency of the channel parameters, leading to a conclusion on the UWB radio channel modeling.Index Terms-Conventional narrowband and wide-band systems (CNWS), inverse Fourier transform (IFT), time decay constant (TDC), ultra wide band (UWB) indoor wireless channel.
Abstract-This paper presents the channel measurements performed within a closed metal cabinet at 60 GHz covering the frequency range 57-62 GHz. Two different volumes of an empty metal cupboard are considered to emulate the environment of interest (an industrial machine). Furthermore, we have considered a number of scenarios such as line of sight, non line of sight, and placing absorbers. A statistical channel model is provided to aid short-range wireless link design within such a reflective and confined environment. Based on the measurements, the largeand small-scale parameters are extracted and fitted using the standard log-normal and Saleh-Valenzuela models, respectively. The obtained results are characterized by a very small path loss exponent, a single cluster phenomenon, and a significantly large root-mean-square (RMS) delay spread. The results show that covering a wall with absorber material dramatically reduces the RMS delay spread. Finally, the proposed channel model is validated by comparing the measured channel with a simulated channel, where the simulated channel is generated from the extracted parameters.Index Terms-Channel characterization and modeling, frequency-domain sounding, 60-GHz measurements, path loss, root-mean-square (RMS) delay spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.