The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5• wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.
We report the first determination of a distance bracket for the high-velocity cloud (HVC) complex C. Combined with previous measurements showing that this cloud has a metallicity of 0.15 times solar, these results provide ample evidence that complex C traces the continuing accretion of intergalactic gas falling onto the Milky Way. Accounting for both neutral and ionized hydrogen as well as He, the distance bracket implies a mass of M , and the complex represents a mass inflow of 0.1-0.25 M yr . We base our distance bracket 6 Ϫ1(3-14) # 10 , , on the detection of Ca ii absorption in the spectrum of the blue horizontal branch (BHB) star SDSS J120404.78ϩ623345.6, in combination with a significant nondetection toward the BHB star BS 16034Ϫ0114. These results set a strong distance bracket of 3.7-11.2 kpc on the distance to complex C. A more weakly supported lower limit of 6.7 kpc may be derived from the spectrum of the BHB star BS 16079Ϫ0017.
Abstract. Optical interferometry is a technique by which the diameters and indeed the direct pulsations of stars are routinely being measured. As a follow-on to a 7 year interferometric campaign to measure the pulsations of over 100 mira variables, our team has been using the Spitzer Space Telescope to obtain 95 mid-infrared spectra of 25 miras during their pulsations over one year while simultaneously ascertaining their near-infrared diameters using the Palomar Testbed Interferometer. These data will then be combined with modeling from NLTE and radiative transfer codes to place hard constraints on our understanding of these stars and their circumstellar environments. We present some initial results from this work and discuss the next steps toward fully characterizing the atmosphere, molecular photosphere and dust production in mira variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.