To rapidly detect rifampin, isoniazid and multidrug resistance in Mycobacterium tuberculosis isolates, a new system (BluePoint MtbDR, Bio Concept Inc., Taichung, Taiwan) including an oligonucleotide array and an automatic reader was evaluated. The array simultaneously identifies M. tuberculosis and predominant mutations in the rpoB, katG and inhA upstream regulatory region (inhA-r) genes. The system was assessed with 324 clinical M. tuberculosis isolates, including 210 multidrug-resistant, 41 rifampin mono-resistant, 34 isoniazid mono-resistant and 39 fully susceptible isolates. The results were compared with those obtained using the GenoType MTBDRplus test, drug-resistant gene sequencing and conventional drug susceptibility testing. The detection limit of the array was 25 pg DNA. The array and the GenoType MTBDRplus test detected 179 (85.2%) and 182 (86.7%) multidrug-resistant M. tuberculosis strains, respectively. The sensitivities of the array for detecting rifampin and isoniazid resistance were 98.4% and 87.7%, respectively, whereas the sensitivities of the GenoType MTBDRplus test for detecting rifampin and isoniazid resistance were 98.8% and 88.9%, respectively. No significant difference was found between the tests with respect to their sensitivities to detect multidrug resistance (p 0.66), rifampin resistance (p 0.69) or isoniazid resistance (p 0.68). The discrepancies were mainly attributed to rare mutations in inhA-r, which were not included in the array. The array can directly reveal transmission-associated mutations, which are useful for epidemiological investigations. The turnaround time of the array test was 6-7 h. This study confirms the feasibility of using this system for rapid and accurate diagnosis of isoniazid and rifampin resistance in M. tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.