Abstract-Digital fingerprinting is a method for protecting digital data in which fingerprints that are embedded in multimedia are capable of identifying unauthorized use of digital content. A powerful attack that can be employed to reduce this tracing capability is collusion, where several users combine their copies of the same content to attenuate/remove the original fingerprints. In this paper, we study the collusion resistance of a fingerprinting system employing Gaussian distributed fingerprints and orthogonal modulation. We introduce the maximum detector and the thresholding detector for colluder identification. We then analyze the collusion resistance of a system to the averaging collusion attack for the performance criteria represented by the probability of a false negative and the probability of a false positive. Lower and upper bounds for the maximum number of colluders max are derived. We then show that the detectors are robust to different collusion attacks. We further study different sets of performance criteria, and our results indicate that attacks based on a few dozen independent copies can confound such a fingerprinting system. We also propose a likelihood-based approach to estimate the number of colluders. Finally, we demonstrate the performance for detecting colluders through experiments using real images.
Digital fingerprinting is a technology for tracing the distribution of multimedia content and protecting them from unauthorized redistribution. Unique identification information is embedded into each distributed copy of multimedia signal and serves as a digital fingerprint. Collusion attack is a cost-effective attack against digital fingerprinting, where colluders combine several copies with the same content but different fingerprints to remove or attenuate the original fingerprints. In this paper, we investigate the average collusion attack and several basic nonlinear collusions on independent Gaussian fingerprints, and study their effectiveness and the impact on the perceptual quality. With unbounded Gaussian fingerprints, perceivable distortion may exist in the fingerprinted copies as well as the copies after the collusion attacks. In order to remove this perceptual distortion, we introduce bounded Gaussian-like fingerprints and study their performance under collusion attacks. We also study several commonly used detection statistics and analyze their performance under collusion attacks. We further propose a preprocessing technique of the extracted fingerprints specifically for collusion scenarios to improve the detection performance.
As the primary noninvasive means to assess muscle activation, the surface electromyogram (sEMG) is of central importance for the study of motor behavior in both clinical and biomedical applications. However, multivariate sEMG analysis is complicated by the fact that data recorded during dynamic contractions are inherently nonstationary. To model this nonstationarity and to determine the dynamic muscle activity patterns during reaching movements, we propose combining hidden Markov models (HMMs) and multivariate autoregressive (mAR) models into a joint HMM-mAR framework. We further propose constructing muscle networks statistically by performing a second level, group analysis on the subject-specific models. Network structural features are subsequently investigated as input features for the purpose of classification. The proposed approach was applied to real sEMG recordings collected from healthy and stroke subjects during reaching movements. When examining group muscle networks, we note that specific muscle connection patterns were selectively recruited during reaching movements and were differentially recruited after stroke compared to healthy subjects. As the analysis was performed on the raw data, the amplitude and the underlying "carrier data" of sEMG signals, we notice that the HMM-mAR model fits the amplitude data well, but not the raw or carrier data. The proposed sEMG analysis framework represents a fundamental departure from existing methods where only the amplitude is typically analyzed or the mAR coefficients are directly used for classification. As the method may provide additional insights into motor control, it appears a promising approach warranting further study.Index Terms-Classification tree, expectation maximization (EM) algorithm, hidden Markov model (HMM), multivariate autoregressive (mAR) model, stroke, surface electromyography (sEMG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.