We describe two models of Power Transistors (IGBT, MOSFET); both were successfully used for the analysis of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) while modeling high-voltage systems (PFC, DC/DC, inverter, etc.). The first semi-mathematical–behavioral insulated-gate bipolar transistor (IGBT) model introduces nonlinear negative feedback generated in the semiconductor’s p+ and n+ layers, which are located near the metal contact of the IGBT emitter, to better describe the dynamic characteristics of the transistor. A simplified model of the metal–oxide-semiconductor field-effect transistor (MOSFET) in the IGBT is used to simplify this IGBT model. The second simpler behavioral model could be used to model both IGBTs and MOSFETs. Model parameters are obtained from datasheets and then adjusted using results from a single measurement test. Modeling results are compared with measured turn-on and turn-off waveforms for different types of IGBTs. To check the validation of the models, a brushless DC electric motor test setup with an inverter was created. Despite the simplicity of the presented models, a comparison of model predictions with hardware measurements revealed that the model accurately forecasted switch transients and aided EMI–EMC investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.