This work estimated the land surface emissivities (LSEs) for MODIS thermal infrared channels 29 (8.4-8.7 μm), 31 (10.78-11.28 μm), and 32 (11.77-12.27 μm) using an improved normalized difference vegetation index (NDVI)-based threshold method. The channel LSEs are expressed as functions of atmospherically corrected reflectance from the MODIS visible and near-infrared channels with wavelengths ranging from 0.4 to 2.2 μm for bare soil. To retain the angular information, the vegetation LSEs were explicitly expressed in the NDVI function. The results exhibited a root mean square error (RMSE) among the estimated LSEs using the improved method, and those calculated using spectral data from Johns Hopkins University (JHU) are below 0.01 for channels 31 and 32. The MODIS land surface temperature/emissivity (LST/E) products, MOD11_L2 with LSE derived via the classification-based method with 1 km resolution and MOD11C1 with LSE retrieved via the day/night LST retrieval method at 0.05°resolution, were used to validate the proposed method. The resultant variances and entropies for the LSEs estimated using the proposed method were larger than those extracted from MOD11_L2, which indicates that the proposed method better described the spectral variation for different land covers. In addition, comparing the estimated LSEs to those from MOD11C1 yielded RMSEs of approximately 0.02 for the three channels; however, more than 70% of pixels exhibited LSE differences within 0.01 for channels 31 and 32, which indicates that the proposed method feasibly depicts LSE variation for different land covers.
An algorithm based on the radiance transfer model (RM) and a dynamic learning neural network (NN) for estimating water vapor content from moderate resolution imaging spectrometer (MODIS) 1B data is developed in this paper. The MODTRAN4 is used to simulate the sun-surface-sensor process with different conditions. The dynamic learning neural network is used to estimate water vapor content. Analysis of the simulation data indicates that the mean and standard deviation of estimation error are under 0.06 gcm(-2 )and 0.08 gcm(-2). The comparison analysis indicates that the estimation result by RM-NN is comparable to that of a MODIS water vapor content product (MYD05_L2). Finally, validation with ground measurement data shows that RM-NN can be used to accurately estimate the water vapor content from MODIS 1B data, and the mean and standard deviation of the estimation error are about 0.12 gcm(-2 )and 0.18 gcm(-2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.