The high-emulation meat with 60% ~ 80% moisture content made use of high humidity extrusion technology was prepared with soybean protein isolate, defatted soybean meal and wheat gluten as main raw materials. The effect of extrusion system parameters (extrusion temperature, screw rpm , moisture content and soybean protein isolate content) on product textured degree was studied. Results showed that: the influence of the moisture content on the product textured degree was the most important, and screw speed was less influential. The textured degree of high moisture content fibriform imitated meat increased first and then decreased with the increasing of extrusion temperature, screw rpm, moisture content and soybean protein isolate content. So, better textured degree could be received by increasing the parameters to advisable numerical value, and the product would have an obvious fibroid structure. The conclusion could also be used as a value reference in the production of high-emulation meat of livestock and poultry. At present, we are committed to produced emulation meat with soy protein. High moisture extraction[1] is jointly developed by Clextral Co. France and Pro. Co.Ltd was one way of producing simulation meat. This technology, with special cooling die head twin-screw extruder for main equipment, prepared textured soy protein production at the moisture content of material higher than 45%. It had been discovered that with the increase of moisture content of textured soy protein the textured rate of production would be increased. The elastic, resiliency and fibroid structure would be much more like the animal meat. At present, extrusion of material moisture higher than 60% could not be achieved in the domestic. The twin-screw extruding technology on soy protein with moisture content 60%~80% was studied in this subject. Production condition of high moisture content fibrous imitated meat would be established and technical features would be supplied to domestic extruding equipment through the influence of extruding temperature, material moisture content, screw speed and material composition on soy protein molecular recombination and fibrosis.
The high-emulation meat with 60% ~ 80% moisture content made use of high humidity extrusion technology. The effect of extrusion system parameters (extrusion temperature, screw rpm , moisture content and soybean protein isolate content) on product texture was studied. Results showed that: protein isolate content had the largest impact on elastic and hardness of the product. And screw speed mainly affected the chew of product. With the increasing of protein isolate content, hardness and elastic decreased and flexibility increased first and then decreased. Hardness and chewiness of product decreased with the increasing of moisture content. With the increasing of extrusion temperature, hardness decreased, flexibility increased first and then decreased, and chewiness decreased. Elastic increased and chewiness decreased with the increasing of screw speed.
This paper describes the method of preparing strong hydrophobic polypyrrole (PPy) on wind turbine blades. The water contact angle of strong hydrophobic PPy coatings was 127.2°. The strong hydrophobic PPy coatings exhibited excellent anti-icing properties. The maximum icing weight of strong hydrophobic PPy coating blade was almost 0.10 g while the maximum icing weight of no coating blade was found to be 26.13 g. The maximum icing thickness of a strong hydrophobic PPy coating blade was only 1.08 mm. The current research will provide a better technique to create anti-icing coatings on wind turbine blades and other outdoor equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.