The vehicle scanning method (VSM), an indirect approach for bridge measurement, has attracted intensive attention since it was proposed by Yang and co-workers in 2004. This method is featured by the fact that no vibration sensors need to be mounted on the bridge, but only one or few vibration sensors are required on the test vehicle. Such an idea has been verified by the field tests, and then quickly extended to construction of mode shapes, identification of damping ratios, and detection of damages for bridges, among others. Compared with the conventional direct method that relies fully on the vibration responses recorded by sensors equipped on the bridge, the advantage of the indirect method is obvious: mobility, economy, and efficiency. Over the years, a rapidly growing number of research works have been conducted along the lines of the VSM for bridge measurement. Particularly, extensive lab experiments and field tests have been carried out worldwide to implement the VSM, resulting in numerous new findings. Moreover, while the technique is still flourishing, it is nourished by inclusion of modern devices such as smartphones, vehicular networks, and cloud. In 2018, a review paper was compiled by two of the authors. To reflect the recent rapid growth of research in this area since then, there exists a need to make an expansion to include the huge number of newly published papers (274 papers in total). As an extension of the 2018 paper, this paper represents a state-of-the-art review of the related researches conducted worldwide. Comments and recommendations will be made at proper places, while concluding remarks including future research directions will be presented at the end of the paper.
Bridge damping ratios are extracted via the skillful use of the single-degree-of-freedom (DOF) test vehicle for the first time in this paper. Central to the simultaneous retrieval of the first few frequencies and damping ratios from the contact (point) response of the bridge is the use of the variational mode decomposition (VMD) and random-decrement technique (RDT). Closed-form solutions are newly derived for the vehicle and contact responses of the damped bridge and validated later numerically. Using the proposed method, one calculates first the mono-component from the contact response by the VMD; then extracts the free-decay response for each mode by the RDT; and finally identifies the frequency and damping ratio by the Hilbert transform. The parametric study confirms that: (1) the contact response outperforms vehicle’s response in retrieving bridge frequencies and damping ratios; (2) the first few frequencies can be identified with robustness for reasonable levels of road roughness, vehicle speed, bridge damping and noise; (1) good result is obtained for the first damping ratio, in spite of the traditional uncertainty existing with damping; and (2) ongoing traffic can enhance the proposed method for bridge identification.
Dual-function amplifiers are proposed for the first time herein for enhancing the capability of a scanning test vehicle for bridges. To start, closed-form solutions are derived for the dynamic responses of the amplifier-vehicle-bridge system with a moving test vehicle. Then, the dynamic amplification factors of the amplifier and vehicle are presented for assessing the bridge/vehicle and vehicle/amplifier transmissibility. It was known that the spectrum of the vehicle may be hindered for extracting the bridge frequencies because of vehicle frequency and rough pavement. Two differentially tuned amplifiers are called on to tackle the problem: one (i.e., the vehicle damper) is to suppress the effect of vehicle’s frequency, acting like the tuned mass damper (TMD), and the other (i.e., the bridge amplifier) is to enlarge the amplitude of bridge frequency of concern. Based on the parametric study, it is concluded that (1) the bridge amplifier performs better than the vehicle one in extracting bridge frequencies by increasing their visibility in the spectrum; (2) the effect of vehicle’s frequency can be suppressed by tuning the vehicle damper such that it functions like a TMD of the vehicle; (3) by tuning the bridge amplifier to any of the first few bridge frequencies, the latter can be well detected even for rough pavement.
An effective procedure is proposed for extracting bridge frequencies including the higher modes using the vehicle collected data. This is enabled by the use of the contact-point response, rather than the vehicle response, for processing by the extreme-point symmetric mode decomposition (ESMD). The intrinsic mode functions (IMFs) so decomposed are then processed by the FFT to yield the bridge frequencies. A systematic study is conducted to compare the proposed procedure with existing ones, while assessing the effects of various parameters involved. The proposed procedure was verified in the field for a two-span bridge located at the Chongqing University campus. It was confirmed to perform better than the existing ones in extracting bridge frequencies inclusive of the higher modes. The following are the reasons: (1) the ESMD is more efficient than the EMD in that remarkably less IMFs are generated; (2) the modal aliasing problem is largely alleviated, which helps enhancing the visibility of bridge frequencies in general; and (3) the contact-point response adopted is free of the vehicle frequency, which makes the higher frequencies more outstanding and detectable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.