Resistive-type palladium structures for hydrogen sensing remains as a research focus for their simplicity in device construction. We demonstrate that a siloxane self-assembled monolayer placed between a substrate and an evaporated ultrathin Pd film promotes the formation of small Pd nanoclusters and reduces the stiction between the palladium and the substrate. The resulting Pd nanocluster film can detect 2 % H 2 with a rapid response time of ϳ70 ms and is sensitive to 25 ppm hydrogen, detectable by a 2% increase in conductance due to the hydrogen-induced palladium lattice expansion.
Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.
Porous alumina membranes are commercially available and have been widely used in recent nanoscale research, for example, as templates in nanowire fabrication through electrodeposition. In this report, we present a new use for porous alumina membranes in the fabrication of alumina nanotubes/nanowires desired in electrochemical devices and catalytic applications. A high yield of alumina nanotubes/nanowires is obtained by etching porous alumina membranes in an aqueous sodium hydroxide solution. We studied the effects of etching time and solution concentration and characterized the alumina nanotubes/nanowires using a scanning electron microscope (SEM). A discussion of the possible mechanism for the formation of nanotubes/nanowires is given. Our results also imply that in nanowire fabrication through the template approach where alumina membranes are removed with sodium hydroxide solution to release the nanowires special attention is needed in characterizing the nanowires with the SEM because alumina nanotubes/nanowires can be easily mistaken for electrodeposited nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.