The period homolog genes Per1, Per2 and Per3 are important components of the circadian clock system. In addition to their role in maintaining circadian rhythm, these genes have been linked to mood disorders, stress response and vulnerability to addiction and alcoholism. In this study, we combined high-resolution sequence analysis and quantitative trait locus (QTL) mapping of gene expression and behavioral traits to identify Per3 as a compelling candidate for the interaction between circadian rhythm, alcohol and stress response. In the BXD family of mouse strains, sequence variants in Per3 have marked effects on steady-state mRNA and protein levels. As a result, the transcript maps as a cis-acting expression QTL (eQTL). We found that an insertion/deletion (indel) variant in a putative stress response element in the promoter region of Per3 causes local control of transcript abundance. This indel results in differences in protein binding affinities between the two alleles through the Nrf2 transcriptional activator. Variation in Per3 is also associated with downstream differences in the expression of genes involved in circadian rhythm, alcohol, stress response and schizophrenia. We found that the Per3 locus is linked to stress/anxiety traits, and that the basal expression of Per3 is also correlated with several anxiety and addiction-related phenotypes. Treatment with alcohol results in increased expression of Per3 in the hippocampus, and this effect interacts with acute restraint stress. Our data provide strong evidence that variation in the Per3 transcript is causally associated with and also responsive to stress and alcohol.
Neurexin 1 (NRXN1) is a large presynaptic transmembrane protein that has complex and variable patterns of expression in the brain. Sequence variants in NRXN1 are associated with differences in cognition, and with schizophrenia and autism. The murine Nrxn1 gene is also highly polymorphic and is associated with significant variation in expression that is under strong genetic control. Here, we use co-expression analysis, high coverage genomic sequence, and expression quantitative trait locus (eQTL) mapping to study the regulation of this gene in the brain. We profiled a family of 72 isogenic progeny strains of a cross between C57BL/6J and DBA/2J (the BXD family) using exon arrays and massively parallel RNA sequencing. Expression of most Nrxn1 exons have high genetic correlation (r>0.6) because of the segregation of a common trans eQTL on chromosome (Chr) 8 and a common cis eQTL on Chr 17. These two loci are also linked to murine phenotypes relevant to schizophrenia and to a novel human schizophrenia candidate gene with high neuronal expression (Pleckstrin and Sec7 domain containing 3). In both human and mice, NRXN1 is co-expressed with numerous synaptic and cell signaling genes, and known schizophrenia candidates. Cross-species co-expression and protein interaction network analyses identified glycogen synthase kinase 3 beta (GSK3B) as one of the most consistent and conserved covariates of NRXN1. By using the Molecular Genetics of Schizophrenia data set, we were able to test and confirm that markers in NRXN1 and GSK3B have epistatic interactions in human populations that can jointly modulate risk of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.